Dose reconstruction for real‐time patient‐specific dose estimation in CT

Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2015-05, Vol.42 (5), p.2740-2751
Hauptverfasser: De Man, Bruno, Wu, Mingye, FitzGerald, Paul, Kalra, Mannudeep, Yin, Zhye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2751
container_issue 5
container_start_page 2740
container_title Medical physics (Lancaster)
container_volume 42
creator De Man, Bruno
Wu, Mingye
FitzGerald, Paul
Kalra, Mannudeep
Yin, Zhye
description Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real‐time patient‐specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per‐voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance‐driven pencil‐beam approach to model the first‐order x‐ray interactions with a set of Gaussian convolution kernels to model the higher‐order x‐ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade‐off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low‐resolution filtered‐backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x‐ray photons, but the authors expect that it may prove useful in applications where real‐time patient‐specific dose estimation is required.
doi_str_mv 10.1118/1.4921066
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22413573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1681916375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3866-89ef8ea10e7d808c320eb15b87641d92e5e4c69654631f74f1088e27eeddff743</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EglJY8AMoEhtYpHhsx48lKk-pCBZlbaXORBilSYkToe74BL6RL8F9wI7VaGbOXN25hJwAHQGAvoSRMAyolDtkwITiqWDU7JIBpUakTNDsgByG8EYplTyj--SAZUYZqtiATK6bgEmLrqlD1_au802dlE0bR3n1_fnV-Tkmi7zzWHexDQt0vvQuKVZnGOI6X5_4OhlPj8hemVcBj7d1SF5ub6bj-3TydPcwvpqkjmspU22w1JgDRVVoqh1nFGeQzbSSAgrDMEPhpJGZkBxKJUqgWiNTiEVRxp4PydlGt4kGbHC-Q_caP6jRdZYxATxTPFLnG2rRNu999GrnPjisqrzGpg8WpAYDkqssohcb1LVNCC2WdtHGz9qlBWpXEVuw24gje7qV7WdzLP7I30wjkG6AD1_h8n8l-_i8FvwBlqeEBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681916375</pqid></control><display><type>article</type><title>Dose reconstruction for real‐time patient‐specific dose estimation in CT</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>De Man, Bruno ; Wu, Mingye ; FitzGerald, Paul ; Kalra, Mannudeep ; Yin, Zhye</creator><creatorcontrib>De Man, Bruno ; Wu, Mingye ; FitzGerald, Paul ; Kalra, Mannudeep ; Yin, Zhye</creatorcontrib><description>Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real‐time patient‐specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per‐voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance‐driven pencil‐beam approach to model the first‐order x‐ray interactions with a set of Gaussian convolution kernels to model the higher‐order x‐ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade‐off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low‐resolution filtered‐backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x‐ray photons, but the authors expect that it may prove useful in applications where real‐time patient‐specific dose estimation is required.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.4921066</identifier><identifier>PMID: 25979072</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>60 APPLIED LIFE SCIENCES ; ABSORBED RADIATION DOSES ; ACCURACY ; ALGORITHMS ; Anatomy ; Biological material, e.g. blood, urine; Haemocytometers ; CAT SCANNING ; computed tomography ; Computer Simulation ; Computerised tomographs ; computerised tomography ; Digital computing or data processing equipment or methods, specially adapted for specific applications ; dosimetry ; Dosimetry/exposure assessment ; Humans ; Image data processing or generation, in general ; image reconstruction ; KERNELS ; medical image processing ; Medical X‐ray imaging ; Models, Biological ; MONTE CARLO METHOD ; Monte Carlo methods ; OPTIMIZATION ; Particle beam detectors ; PATIENTS ; Phantoms, Imaging ; PLANNING ; radiation dose estimation ; Radiography, Thoracic - instrumentation ; Radiography, Thoracic - methods ; Radiometry - instrumentation ; Radiometry - methods ; RADIOTHERAPY ; Reconstruction ; Scintigraphy ; Tomography, X-Ray Computed - instrumentation ; Tomography, X-Ray Computed - methods ; X RADIATION ; X‐ray detectors ; X‐ray scattering</subject><ispartof>Medical physics (Lancaster), 2015-05, Vol.42 (5), p.2740-2751</ispartof><rights>2015 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3866-89ef8ea10e7d808c320eb15b87641d92e5e4c69654631f74f1088e27eeddff743</citedby><cites>FETCH-LOGICAL-c3866-89ef8ea10e7d808c320eb15b87641d92e5e4c69654631f74f1088e27eeddff743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.4921066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.4921066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25979072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22413573$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>De Man, Bruno</creatorcontrib><creatorcontrib>Wu, Mingye</creatorcontrib><creatorcontrib>FitzGerald, Paul</creatorcontrib><creatorcontrib>Kalra, Mannudeep</creatorcontrib><creatorcontrib>Yin, Zhye</creatorcontrib><title>Dose reconstruction for real‐time patient‐specific dose estimation in CT</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real‐time patient‐specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per‐voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance‐driven pencil‐beam approach to model the first‐order x‐ray interactions with a set of Gaussian convolution kernels to model the higher‐order x‐ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade‐off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low‐resolution filtered‐backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x‐ray photons, but the authors expect that it may prove useful in applications where real‐time patient‐specific dose estimation is required.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ABSORBED RADIATION DOSES</subject><subject>ACCURACY</subject><subject>ALGORITHMS</subject><subject>Anatomy</subject><subject>Biological material, e.g. blood, urine; Haemocytometers</subject><subject>CAT SCANNING</subject><subject>computed tomography</subject><subject>Computer Simulation</subject><subject>Computerised tomographs</subject><subject>computerised tomography</subject><subject>Digital computing or data processing equipment or methods, specially adapted for specific applications</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>Humans</subject><subject>Image data processing or generation, in general</subject><subject>image reconstruction</subject><subject>KERNELS</subject><subject>medical image processing</subject><subject>Medical X‐ray imaging</subject><subject>Models, Biological</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>OPTIMIZATION</subject><subject>Particle beam detectors</subject><subject>PATIENTS</subject><subject>Phantoms, Imaging</subject><subject>PLANNING</subject><subject>radiation dose estimation</subject><subject>Radiography, Thoracic - instrumentation</subject><subject>Radiography, Thoracic - methods</subject><subject>Radiometry - instrumentation</subject><subject>Radiometry - methods</subject><subject>RADIOTHERAPY</subject><subject>Reconstruction</subject><subject>Scintigraphy</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>X RADIATION</subject><subject>X‐ray detectors</subject><subject>X‐ray scattering</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtOwzAQRS0EglJY8AMoEhtYpHhsx48lKk-pCBZlbaXORBilSYkToe74BL6RL8F9wI7VaGbOXN25hJwAHQGAvoSRMAyolDtkwITiqWDU7JIBpUakTNDsgByG8EYplTyj--SAZUYZqtiATK6bgEmLrqlD1_au802dlE0bR3n1_fnV-Tkmi7zzWHexDQt0vvQuKVZnGOI6X5_4OhlPj8hemVcBj7d1SF5ub6bj-3TydPcwvpqkjmspU22w1JgDRVVoqh1nFGeQzbSSAgrDMEPhpJGZkBxKJUqgWiNTiEVRxp4PydlGt4kGbHC-Q_caP6jRdZYxATxTPFLnG2rRNu999GrnPjisqrzGpg8WpAYDkqssohcb1LVNCC2WdtHGz9qlBWpXEVuw24gje7qV7WdzLP7I30wjkG6AD1_h8n8l-_i8FvwBlqeEBQ</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>De Man, Bruno</creator><creator>Wu, Mingye</creator><creator>FitzGerald, Paul</creator><creator>Kalra, Mannudeep</creator><creator>Yin, Zhye</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201505</creationdate><title>Dose reconstruction for real‐time patient‐specific dose estimation in CT</title><author>De Man, Bruno ; Wu, Mingye ; FitzGerald, Paul ; Kalra, Mannudeep ; Yin, Zhye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3866-89ef8ea10e7d808c320eb15b87641d92e5e4c69654631f74f1088e27eeddff743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ABSORBED RADIATION DOSES</topic><topic>ACCURACY</topic><topic>ALGORITHMS</topic><topic>Anatomy</topic><topic>Biological material, e.g. blood, urine; Haemocytometers</topic><topic>CAT SCANNING</topic><topic>computed tomography</topic><topic>Computer Simulation</topic><topic>Computerised tomographs</topic><topic>computerised tomography</topic><topic>Digital computing or data processing equipment or methods, specially adapted for specific applications</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>Humans</topic><topic>Image data processing or generation, in general</topic><topic>image reconstruction</topic><topic>KERNELS</topic><topic>medical image processing</topic><topic>Medical X‐ray imaging</topic><topic>Models, Biological</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>OPTIMIZATION</topic><topic>Particle beam detectors</topic><topic>PATIENTS</topic><topic>Phantoms, Imaging</topic><topic>PLANNING</topic><topic>radiation dose estimation</topic><topic>Radiography, Thoracic - instrumentation</topic><topic>Radiography, Thoracic - methods</topic><topic>Radiometry - instrumentation</topic><topic>Radiometry - methods</topic><topic>RADIOTHERAPY</topic><topic>Reconstruction</topic><topic>Scintigraphy</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>X RADIATION</topic><topic>X‐ray detectors</topic><topic>X‐ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Man, Bruno</creatorcontrib><creatorcontrib>Wu, Mingye</creatorcontrib><creatorcontrib>FitzGerald, Paul</creatorcontrib><creatorcontrib>Kalra, Mannudeep</creatorcontrib><creatorcontrib>Yin, Zhye</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Man, Bruno</au><au>Wu, Mingye</au><au>FitzGerald, Paul</au><au>Kalra, Mannudeep</au><au>Yin, Zhye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dose reconstruction for real‐time patient‐specific dose estimation in CT</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2015-05</date><risdate>2015</risdate><volume>42</volume><issue>5</issue><spage>2740</spage><epage>2751</epage><pages>2740-2751</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real‐time patient‐specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per‐voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance‐driven pencil‐beam approach to model the first‐order x‐ray interactions with a set of Gaussian convolution kernels to model the higher‐order x‐ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade‐off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low‐resolution filtered‐backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x‐ray photons, but the authors expect that it may prove useful in applications where real‐time patient‐specific dose estimation is required.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>25979072</pmid><doi>10.1118/1.4921066</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2015-05, Vol.42 (5), p.2740-2751
issn 0094-2405
2473-4209
language eng
recordid cdi_osti_scitechconnect_22413573
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects 60 APPLIED LIFE SCIENCES
ABSORBED RADIATION DOSES
ACCURACY
ALGORITHMS
Anatomy
Biological material, e.g. blood, urine
Haemocytometers
CAT SCANNING
computed tomography
Computer Simulation
Computerised tomographs
computerised tomography
Digital computing or data processing equipment or methods, specially adapted for specific applications
dosimetry
Dosimetry/exposure assessment
Humans
Image data processing or generation, in general
image reconstruction
KERNELS
medical image processing
Medical X‐ray imaging
Models, Biological
MONTE CARLO METHOD
Monte Carlo methods
OPTIMIZATION
Particle beam detectors
PATIENTS
Phantoms, Imaging
PLANNING
radiation dose estimation
Radiography, Thoracic - instrumentation
Radiography, Thoracic - methods
Radiometry - instrumentation
Radiometry - methods
RADIOTHERAPY
Reconstruction
Scintigraphy
Tomography, X-Ray Computed - instrumentation
Tomography, X-Ray Computed - methods
X RADIATION
X‐ray detectors
X‐ray scattering
title Dose reconstruction for real‐time patient‐specific dose estimation in CT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dose%20reconstruction%20for%20real%E2%80%90time%20patient%E2%80%90specific%20dose%20estimation%20in%20CT&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=De%20Man,%20Bruno&rft.date=2015-05&rft.volume=42&rft.issue=5&rft.spage=2740&rft.epage=2751&rft.pages=2740-2751&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1118/1.4921066&rft_dat=%3Cproquest_osti_%3E1681916375%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681916375&rft_id=info:pmid/25979072&rfr_iscdi=true