Dose reconstruction for real‐time patient‐specific dose estimation in CT
Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefi...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2015-05, Vol.42 (5), p.2740-2751 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2751 |
---|---|
container_issue | 5 |
container_start_page | 2740 |
container_title | Medical physics (Lancaster) |
container_volume | 42 |
creator | De Man, Bruno Wu, Mingye FitzGerald, Paul Kalra, Mannudeep Yin, Zhye |
description | Purpose:
Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real‐time patient‐specific protocol optimization.
Methods:
The authors present a new method for volumetrically reconstructing absorbed dose on a per‐voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance‐driven pencil‐beam approach to model the first‐order x‐ray interactions with a set of Gaussian convolution kernels to model the higher‐order x‐ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth.
Results:
The authors’ results indicate that the proposed approach offers a good trade‐off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low‐resolution filtered‐backprojection algorithm.
Conclusions:
The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x‐ray photons, but the authors expect that it may prove useful in applications where real‐time patient‐specific dose estimation is required. |
doi_str_mv | 10.1118/1.4921066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22413573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1681916375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3866-89ef8ea10e7d808c320eb15b87641d92e5e4c69654631f74f1088e27eeddff743</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EglJY8AMoEhtYpHhsx48lKk-pCBZlbaXORBilSYkToe74BL6RL8F9wI7VaGbOXN25hJwAHQGAvoSRMAyolDtkwITiqWDU7JIBpUakTNDsgByG8EYplTyj--SAZUYZqtiATK6bgEmLrqlD1_au802dlE0bR3n1_fnV-Tkmi7zzWHexDQt0vvQuKVZnGOI6X5_4OhlPj8hemVcBj7d1SF5ub6bj-3TydPcwvpqkjmspU22w1JgDRVVoqh1nFGeQzbSSAgrDMEPhpJGZkBxKJUqgWiNTiEVRxp4PydlGt4kGbHC-Q_caP6jRdZYxATxTPFLnG2rRNu999GrnPjisqrzGpg8WpAYDkqssohcb1LVNCC2WdtHGz9qlBWpXEVuw24gje7qV7WdzLP7I30wjkG6AD1_h8n8l-_i8FvwBlqeEBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681916375</pqid></control><display><type>article</type><title>Dose reconstruction for real‐time patient‐specific dose estimation in CT</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>De Man, Bruno ; Wu, Mingye ; FitzGerald, Paul ; Kalra, Mannudeep ; Yin, Zhye</creator><creatorcontrib>De Man, Bruno ; Wu, Mingye ; FitzGerald, Paul ; Kalra, Mannudeep ; Yin, Zhye</creatorcontrib><description>Purpose:
Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real‐time patient‐specific protocol optimization.
Methods:
The authors present a new method for volumetrically reconstructing absorbed dose on a per‐voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance‐driven pencil‐beam approach to model the first‐order x‐ray interactions with a set of Gaussian convolution kernels to model the higher‐order x‐ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth.
Results:
The authors’ results indicate that the proposed approach offers a good trade‐off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low‐resolution filtered‐backprojection algorithm.
Conclusions:
The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x‐ray photons, but the authors expect that it may prove useful in applications where real‐time patient‐specific dose estimation is required.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.4921066</identifier><identifier>PMID: 25979072</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>60 APPLIED LIFE SCIENCES ; ABSORBED RADIATION DOSES ; ACCURACY ; ALGORITHMS ; Anatomy ; Biological material, e.g. blood, urine; Haemocytometers ; CAT SCANNING ; computed tomography ; Computer Simulation ; Computerised tomographs ; computerised tomography ; Digital computing or data processing equipment or methods, specially adapted for specific applications ; dosimetry ; Dosimetry/exposure assessment ; Humans ; Image data processing or generation, in general ; image reconstruction ; KERNELS ; medical image processing ; Medical X‐ray imaging ; Models, Biological ; MONTE CARLO METHOD ; Monte Carlo methods ; OPTIMIZATION ; Particle beam detectors ; PATIENTS ; Phantoms, Imaging ; PLANNING ; radiation dose estimation ; Radiography, Thoracic - instrumentation ; Radiography, Thoracic - methods ; Radiometry - instrumentation ; Radiometry - methods ; RADIOTHERAPY ; Reconstruction ; Scintigraphy ; Tomography, X-Ray Computed - instrumentation ; Tomography, X-Ray Computed - methods ; X RADIATION ; X‐ray detectors ; X‐ray scattering</subject><ispartof>Medical physics (Lancaster), 2015-05, Vol.42 (5), p.2740-2751</ispartof><rights>2015 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3866-89ef8ea10e7d808c320eb15b87641d92e5e4c69654631f74f1088e27eeddff743</citedby><cites>FETCH-LOGICAL-c3866-89ef8ea10e7d808c320eb15b87641d92e5e4c69654631f74f1088e27eeddff743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.4921066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.4921066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25979072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22413573$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>De Man, Bruno</creatorcontrib><creatorcontrib>Wu, Mingye</creatorcontrib><creatorcontrib>FitzGerald, Paul</creatorcontrib><creatorcontrib>Kalra, Mannudeep</creatorcontrib><creatorcontrib>Yin, Zhye</creatorcontrib><title>Dose reconstruction for real‐time patient‐specific dose estimation in CT</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose:
Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real‐time patient‐specific protocol optimization.
Methods:
The authors present a new method for volumetrically reconstructing absorbed dose on a per‐voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance‐driven pencil‐beam approach to model the first‐order x‐ray interactions with a set of Gaussian convolution kernels to model the higher‐order x‐ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth.
Results:
The authors’ results indicate that the proposed approach offers a good trade‐off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low‐resolution filtered‐backprojection algorithm.
Conclusions:
The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x‐ray photons, but the authors expect that it may prove useful in applications where real‐time patient‐specific dose estimation is required.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ABSORBED RADIATION DOSES</subject><subject>ACCURACY</subject><subject>ALGORITHMS</subject><subject>Anatomy</subject><subject>Biological material, e.g. blood, urine; Haemocytometers</subject><subject>CAT SCANNING</subject><subject>computed tomography</subject><subject>Computer Simulation</subject><subject>Computerised tomographs</subject><subject>computerised tomography</subject><subject>Digital computing or data processing equipment or methods, specially adapted for specific applications</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>Humans</subject><subject>Image data processing or generation, in general</subject><subject>image reconstruction</subject><subject>KERNELS</subject><subject>medical image processing</subject><subject>Medical X‐ray imaging</subject><subject>Models, Biological</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>OPTIMIZATION</subject><subject>Particle beam detectors</subject><subject>PATIENTS</subject><subject>Phantoms, Imaging</subject><subject>PLANNING</subject><subject>radiation dose estimation</subject><subject>Radiography, Thoracic - instrumentation</subject><subject>Radiography, Thoracic - methods</subject><subject>Radiometry - instrumentation</subject><subject>Radiometry - methods</subject><subject>RADIOTHERAPY</subject><subject>Reconstruction</subject><subject>Scintigraphy</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>X RADIATION</subject><subject>X‐ray detectors</subject><subject>X‐ray scattering</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtOwzAQRS0EglJY8AMoEhtYpHhsx48lKk-pCBZlbaXORBilSYkToe74BL6RL8F9wI7VaGbOXN25hJwAHQGAvoSRMAyolDtkwITiqWDU7JIBpUakTNDsgByG8EYplTyj--SAZUYZqtiATK6bgEmLrqlD1_au802dlE0bR3n1_fnV-Tkmi7zzWHexDQt0vvQuKVZnGOI6X5_4OhlPj8hemVcBj7d1SF5ub6bj-3TydPcwvpqkjmspU22w1JgDRVVoqh1nFGeQzbSSAgrDMEPhpJGZkBxKJUqgWiNTiEVRxp4PydlGt4kGbHC-Q_caP6jRdZYxATxTPFLnG2rRNu999GrnPjisqrzGpg8WpAYDkqssohcb1LVNCC2WdtHGz9qlBWpXEVuw24gje7qV7WdzLP7I30wjkG6AD1_h8n8l-_i8FvwBlqeEBQ</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>De Man, Bruno</creator><creator>Wu, Mingye</creator><creator>FitzGerald, Paul</creator><creator>Kalra, Mannudeep</creator><creator>Yin, Zhye</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201505</creationdate><title>Dose reconstruction for real‐time patient‐specific dose estimation in CT</title><author>De Man, Bruno ; Wu, Mingye ; FitzGerald, Paul ; Kalra, Mannudeep ; Yin, Zhye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3866-89ef8ea10e7d808c320eb15b87641d92e5e4c69654631f74f1088e27eeddff743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ABSORBED RADIATION DOSES</topic><topic>ACCURACY</topic><topic>ALGORITHMS</topic><topic>Anatomy</topic><topic>Biological material, e.g. blood, urine; Haemocytometers</topic><topic>CAT SCANNING</topic><topic>computed tomography</topic><topic>Computer Simulation</topic><topic>Computerised tomographs</topic><topic>computerised tomography</topic><topic>Digital computing or data processing equipment or methods, specially adapted for specific applications</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>Humans</topic><topic>Image data processing or generation, in general</topic><topic>image reconstruction</topic><topic>KERNELS</topic><topic>medical image processing</topic><topic>Medical X‐ray imaging</topic><topic>Models, Biological</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>OPTIMIZATION</topic><topic>Particle beam detectors</topic><topic>PATIENTS</topic><topic>Phantoms, Imaging</topic><topic>PLANNING</topic><topic>radiation dose estimation</topic><topic>Radiography, Thoracic - instrumentation</topic><topic>Radiography, Thoracic - methods</topic><topic>Radiometry - instrumentation</topic><topic>Radiometry - methods</topic><topic>RADIOTHERAPY</topic><topic>Reconstruction</topic><topic>Scintigraphy</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>X RADIATION</topic><topic>X‐ray detectors</topic><topic>X‐ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Man, Bruno</creatorcontrib><creatorcontrib>Wu, Mingye</creatorcontrib><creatorcontrib>FitzGerald, Paul</creatorcontrib><creatorcontrib>Kalra, Mannudeep</creatorcontrib><creatorcontrib>Yin, Zhye</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Man, Bruno</au><au>Wu, Mingye</au><au>FitzGerald, Paul</au><au>Kalra, Mannudeep</au><au>Yin, Zhye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dose reconstruction for real‐time patient‐specific dose estimation in CT</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2015-05</date><risdate>2015</risdate><volume>42</volume><issue>5</issue><spage>2740</spage><epage>2751</epage><pages>2740-2751</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose:
Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x‐ray detectors, and optimized CT acquisition schemes with precise control over the x‐ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real‐time patient‐specific protocol optimization.
Methods:
The authors present a new method for volumetrically reconstructing absorbed dose on a per‐voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance‐driven pencil‐beam approach to model the first‐order x‐ray interactions with a set of Gaussian convolution kernels to model the higher‐order x‐ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth.
Results:
The authors’ results indicate that the proposed approach offers a good trade‐off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low‐resolution filtered‐backprojection algorithm.
Conclusions:
The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x‐ray photons, but the authors expect that it may prove useful in applications where real‐time patient‐specific dose estimation is required.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>25979072</pmid><doi>10.1118/1.4921066</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2015-05, Vol.42 (5), p.2740-2751 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_osti_scitechconnect_22413573 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | 60 APPLIED LIFE SCIENCES ABSORBED RADIATION DOSES ACCURACY ALGORITHMS Anatomy Biological material, e.g. blood, urine Haemocytometers CAT SCANNING computed tomography Computer Simulation Computerised tomographs computerised tomography Digital computing or data processing equipment or methods, specially adapted for specific applications dosimetry Dosimetry/exposure assessment Humans Image data processing or generation, in general image reconstruction KERNELS medical image processing Medical X‐ray imaging Models, Biological MONTE CARLO METHOD Monte Carlo methods OPTIMIZATION Particle beam detectors PATIENTS Phantoms, Imaging PLANNING radiation dose estimation Radiography, Thoracic - instrumentation Radiography, Thoracic - methods Radiometry - instrumentation Radiometry - methods RADIOTHERAPY Reconstruction Scintigraphy Tomography, X-Ray Computed - instrumentation Tomography, X-Ray Computed - methods X RADIATION X‐ray detectors X‐ray scattering |
title | Dose reconstruction for real‐time patient‐specific dose estimation in CT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dose%20reconstruction%20for%20real%E2%80%90time%20patient%E2%80%90specific%20dose%20estimation%20in%20CT&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=De%20Man,%20Bruno&rft.date=2015-05&rft.volume=42&rft.issue=5&rft.spage=2740&rft.epage=2751&rft.pages=2740-2751&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1118/1.4921066&rft_dat=%3Cproquest_osti_%3E1681916375%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681916375&rft_id=info:pmid/25979072&rfr_iscdi=true |