Graphene nanopores as negative differential resistance devices
We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-02, Vol.117 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 117 |
creator | Qiu, Wanzhi Nguyen, Phuong Duc Skafidas, Efstratios |
description | We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene nanoribbons with uniform widths, where the central scattering region has a nanopore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. We show that nitrogen-passivated scattering regions generally result in pronounced NDR properties, while hydrogen-passivated ones do not. This NDR effect occurs at low bias voltages, below 1 V, and achieves extraordinarily high peak-to-valley current ratio, while still attaining very high peak current densities. In addition, very sharp current peaks in the μA range can occur in the I-V curves, and through varying structural dimensions of the proposed structure multiple NDR regions can be realized. These results suggest that the device has promising potential in applications such as high frequency oscillators, memory devices, and fast switches. |
doi_str_mv | 10.1063/1.4907265 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22413053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124907230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-be61fd25124152b7e85d8f9dbf0d5a8994bcecc4958d7aa417061166070e6f4c3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWKsH32DBk4etM9nNbnIRpGgVCl70HLLZiU2p2ZqkBd_eLS14Gvjn45_hY-wWYYbQVA84qxW0vBFnbIIgVdkKAedsAsCxlKpVl-wqpTUAoqzUhD0uotmuKFARTBi2Q6RUmFQE-jLZ76novXMUKWRvNsW49CmbYMec9t5SumYXzmwS3ZzmlH2-PH_MX8vl--Jt_rQsLZcilx016HoukNcoeNeSFL10qu8c9MJIperOkrW1ErJvjamxhQaxaaAFalxtqym7O_YOKXudrM9kV3YIgWzWfGytQFT_1DYOPztKWa-HXQzjY5qPpw9iKhip-yNl45BSJKe30X-b-KsR9EGiRn2SWP0ByS5iYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124907230</pqid></control><display><type>article</type><title>Graphene nanopores as negative differential resistance devices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Qiu, Wanzhi ; Nguyen, Phuong Duc ; Skafidas, Efstratios</creator><creatorcontrib>Qiu, Wanzhi ; Nguyen, Phuong Duc ; Skafidas, Efstratios</creatorcontrib><description>We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene nanoribbons with uniform widths, where the central scattering region has a nanopore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. We show that nitrogen-passivated scattering regions generally result in pronounced NDR properties, while hydrogen-passivated ones do not. This NDR effect occurs at low bias voltages, below 1 V, and achieves extraordinarily high peak-to-valley current ratio, while still attaining very high peak current densities. In addition, very sharp current peaks in the μA range can occur in the I-V curves, and through varying structural dimensions of the proposed structure multiple NDR regions can be realized. These results suggest that the device has promising potential in applications such as high frequency oscillators, memory devices, and fast switches.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4907265</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CURRENT DENSITY ; DENSITY FUNCTIONAL METHOD ; DIAGRAMS ; ELECTRIC CONDUCTIVITY ; ELECTRIC POTENTIAL ; GRAPHENE ; GREEN FUNCTION ; Green's functions ; HYDROGEN ; MEMORY DEVICES ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; NITROGEN ; OSCILLATORS ; Porosity ; Quantum transport ; SCATTERING ; SWITCHES</subject><ispartof>Journal of applied physics, 2015-02, Vol.117 (5)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-be61fd25124152b7e85d8f9dbf0d5a8994bcecc4958d7aa417061166070e6f4c3</citedby><cites>FETCH-LOGICAL-c285t-be61fd25124152b7e85d8f9dbf0d5a8994bcecc4958d7aa417061166070e6f4c3</cites><orcidid>0000-0003-4263-9972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22413053$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Wanzhi</creatorcontrib><creatorcontrib>Nguyen, Phuong Duc</creatorcontrib><creatorcontrib>Skafidas, Efstratios</creatorcontrib><title>Graphene nanopores as negative differential resistance devices</title><title>Journal of applied physics</title><description>We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene nanoribbons with uniform widths, where the central scattering region has a nanopore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. We show that nitrogen-passivated scattering regions generally result in pronounced NDR properties, while hydrogen-passivated ones do not. This NDR effect occurs at low bias voltages, below 1 V, and achieves extraordinarily high peak-to-valley current ratio, while still attaining very high peak current densities. In addition, very sharp current peaks in the μA range can occur in the I-V curves, and through varying structural dimensions of the proposed structure multiple NDR regions can be realized. These results suggest that the device has promising potential in applications such as high frequency oscillators, memory devices, and fast switches.</description><subject>Applied physics</subject><subject>CURRENT DENSITY</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>DIAGRAMS</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRIC POTENTIAL</subject><subject>GRAPHENE</subject><subject>GREEN FUNCTION</subject><subject>Green's functions</subject><subject>HYDROGEN</subject><subject>MEMORY DEVICES</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>NITROGEN</subject><subject>OSCILLATORS</subject><subject>Porosity</subject><subject>Quantum transport</subject><subject>SCATTERING</subject><subject>SWITCHES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKAzEQhoMoWKsH32DBk4etM9nNbnIRpGgVCl70HLLZiU2p2ZqkBd_eLS14Gvjn45_hY-wWYYbQVA84qxW0vBFnbIIgVdkKAedsAsCxlKpVl-wqpTUAoqzUhD0uotmuKFARTBi2Q6RUmFQE-jLZ76novXMUKWRvNsW49CmbYMec9t5SumYXzmwS3ZzmlH2-PH_MX8vl--Jt_rQsLZcilx016HoukNcoeNeSFL10qu8c9MJIperOkrW1ErJvjamxhQaxaaAFalxtqym7O_YOKXudrM9kV3YIgWzWfGytQFT_1DYOPztKWa-HXQzjY5qPpw9iKhip-yNl45BSJKe30X-b-KsR9EGiRn2SWP0ByS5iYQ</recordid><startdate>20150207</startdate><enddate>20150207</enddate><creator>Qiu, Wanzhi</creator><creator>Nguyen, Phuong Duc</creator><creator>Skafidas, Efstratios</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4263-9972</orcidid></search><sort><creationdate>20150207</creationdate><title>Graphene nanopores as negative differential resistance devices</title><author>Qiu, Wanzhi ; Nguyen, Phuong Duc ; Skafidas, Efstratios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-be61fd25124152b7e85d8f9dbf0d5a8994bcecc4958d7aa417061166070e6f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>CURRENT DENSITY</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>DIAGRAMS</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRIC POTENTIAL</topic><topic>GRAPHENE</topic><topic>GREEN FUNCTION</topic><topic>Green's functions</topic><topic>HYDROGEN</topic><topic>MEMORY DEVICES</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>NITROGEN</topic><topic>OSCILLATORS</topic><topic>Porosity</topic><topic>Quantum transport</topic><topic>SCATTERING</topic><topic>SWITCHES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Wanzhi</creatorcontrib><creatorcontrib>Nguyen, Phuong Duc</creatorcontrib><creatorcontrib>Skafidas, Efstratios</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Wanzhi</au><au>Nguyen, Phuong Duc</au><au>Skafidas, Efstratios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene nanopores as negative differential resistance devices</atitle><jtitle>Journal of applied physics</jtitle><date>2015-02-07</date><risdate>2015</risdate><volume>117</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene nanoribbons with uniform widths, where the central scattering region has a nanopore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. We show that nitrogen-passivated scattering regions generally result in pronounced NDR properties, while hydrogen-passivated ones do not. This NDR effect occurs at low bias voltages, below 1 V, and achieves extraordinarily high peak-to-valley current ratio, while still attaining very high peak current densities. In addition, very sharp current peaks in the μA range can occur in the I-V curves, and through varying structural dimensions of the proposed structure multiple NDR regions can be realized. These results suggest that the device has promising potential in applications such as high frequency oscillators, memory devices, and fast switches.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4907265</doi><orcidid>https://orcid.org/0000-0003-4263-9972</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2015-02, Vol.117 (5) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22413053 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics CURRENT DENSITY DENSITY FUNCTIONAL METHOD DIAGRAMS ELECTRIC CONDUCTIVITY ELECTRIC POTENTIAL GRAPHENE GREEN FUNCTION Green's functions HYDROGEN MEMORY DEVICES NANOSCIENCE AND NANOTECHNOLOGY NANOSTRUCTURES NITROGEN OSCILLATORS Porosity Quantum transport SCATTERING SWITCHES |
title | Graphene nanopores as negative differential resistance devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20nanopores%20as%20negative%20differential%20resistance%20devices&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Qiu,%20Wanzhi&rft.date=2015-02-07&rft.volume=117&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4907265&rft_dat=%3Cproquest_osti_%3E2124907230%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124907230&rft_id=info:pmid/&rfr_iscdi=true |