Graphene nanopores as negative differential resistance devices

We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-02, Vol.117 (5)
Hauptverfasser: Qiu, Wanzhi, Nguyen, Phuong Duc, Skafidas, Efstratios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 117
creator Qiu, Wanzhi
Nguyen, Phuong Duc
Skafidas, Efstratios
description We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene nanoribbons with uniform widths, where the central scattering region has a nanopore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. We show that nitrogen-passivated scattering regions generally result in pronounced NDR properties, while hydrogen-passivated ones do not. This NDR effect occurs at low bias voltages, below 1 V, and achieves extraordinarily high peak-to-valley current ratio, while still attaining very high peak current densities. In addition, very sharp current peaks in the μA range can occur in the I-V curves, and through varying structural dimensions of the proposed structure multiple NDR regions can be realized. These results suggest that the device has promising potential in applications such as high frequency oscillators, memory devices, and fast switches.
doi_str_mv 10.1063/1.4907265
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22413053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124907230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-be61fd25124152b7e85d8f9dbf0d5a8994bcecc4958d7aa417061166070e6f4c3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWKsH32DBk4etM9nNbnIRpGgVCl70HLLZiU2p2ZqkBd_eLS14Gvjn45_hY-wWYYbQVA84qxW0vBFnbIIgVdkKAedsAsCxlKpVl-wqpTUAoqzUhD0uotmuKFARTBi2Q6RUmFQE-jLZ76novXMUKWRvNsW49CmbYMec9t5SumYXzmwS3ZzmlH2-PH_MX8vl--Jt_rQsLZcilx016HoukNcoeNeSFL10qu8c9MJIperOkrW1ErJvjamxhQaxaaAFalxtqym7O_YOKXudrM9kV3YIgWzWfGytQFT_1DYOPztKWa-HXQzjY5qPpw9iKhip-yNl45BSJKe30X-b-KsR9EGiRn2SWP0ByS5iYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124907230</pqid></control><display><type>article</type><title>Graphene nanopores as negative differential resistance devices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Qiu, Wanzhi ; Nguyen, Phuong Duc ; Skafidas, Efstratios</creator><creatorcontrib>Qiu, Wanzhi ; Nguyen, Phuong Duc ; Skafidas, Efstratios</creatorcontrib><description>We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene nanoribbons with uniform widths, where the central scattering region has a nanopore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. We show that nitrogen-passivated scattering regions generally result in pronounced NDR properties, while hydrogen-passivated ones do not. This NDR effect occurs at low bias voltages, below 1 V, and achieves extraordinarily high peak-to-valley current ratio, while still attaining very high peak current densities. In addition, very sharp current peaks in the μA range can occur in the I-V curves, and through varying structural dimensions of the proposed structure multiple NDR regions can be realized. These results suggest that the device has promising potential in applications such as high frequency oscillators, memory devices, and fast switches.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4907265</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CURRENT DENSITY ; DENSITY FUNCTIONAL METHOD ; DIAGRAMS ; ELECTRIC CONDUCTIVITY ; ELECTRIC POTENTIAL ; GRAPHENE ; GREEN FUNCTION ; Green's functions ; HYDROGEN ; MEMORY DEVICES ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; NITROGEN ; OSCILLATORS ; Porosity ; Quantum transport ; SCATTERING ; SWITCHES</subject><ispartof>Journal of applied physics, 2015-02, Vol.117 (5)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-be61fd25124152b7e85d8f9dbf0d5a8994bcecc4958d7aa417061166070e6f4c3</citedby><cites>FETCH-LOGICAL-c285t-be61fd25124152b7e85d8f9dbf0d5a8994bcecc4958d7aa417061166070e6f4c3</cites><orcidid>0000-0003-4263-9972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22413053$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Wanzhi</creatorcontrib><creatorcontrib>Nguyen, Phuong Duc</creatorcontrib><creatorcontrib>Skafidas, Efstratios</creatorcontrib><title>Graphene nanopores as negative differential resistance devices</title><title>Journal of applied physics</title><description>We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene nanoribbons with uniform widths, where the central scattering region has a nanopore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. We show that nitrogen-passivated scattering regions generally result in pronounced NDR properties, while hydrogen-passivated ones do not. This NDR effect occurs at low bias voltages, below 1 V, and achieves extraordinarily high peak-to-valley current ratio, while still attaining very high peak current densities. In addition, very sharp current peaks in the μA range can occur in the I-V curves, and through varying structural dimensions of the proposed structure multiple NDR regions can be realized. These results suggest that the device has promising potential in applications such as high frequency oscillators, memory devices, and fast switches.</description><subject>Applied physics</subject><subject>CURRENT DENSITY</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>DIAGRAMS</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRIC POTENTIAL</subject><subject>GRAPHENE</subject><subject>GREEN FUNCTION</subject><subject>Green's functions</subject><subject>HYDROGEN</subject><subject>MEMORY DEVICES</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>NITROGEN</subject><subject>OSCILLATORS</subject><subject>Porosity</subject><subject>Quantum transport</subject><subject>SCATTERING</subject><subject>SWITCHES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKAzEQhoMoWKsH32DBk4etM9nNbnIRpGgVCl70HLLZiU2p2ZqkBd_eLS14Gvjn45_hY-wWYYbQVA84qxW0vBFnbIIgVdkKAedsAsCxlKpVl-wqpTUAoqzUhD0uotmuKFARTBi2Q6RUmFQE-jLZ76novXMUKWRvNsW49CmbYMec9t5SumYXzmwS3ZzmlH2-PH_MX8vl--Jt_rQsLZcilx016HoukNcoeNeSFL10qu8c9MJIperOkrW1ErJvjamxhQaxaaAFalxtqym7O_YOKXudrM9kV3YIgWzWfGytQFT_1DYOPztKWa-HXQzjY5qPpw9iKhip-yNl45BSJKe30X-b-KsR9EGiRn2SWP0ByS5iYQ</recordid><startdate>20150207</startdate><enddate>20150207</enddate><creator>Qiu, Wanzhi</creator><creator>Nguyen, Phuong Duc</creator><creator>Skafidas, Efstratios</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4263-9972</orcidid></search><sort><creationdate>20150207</creationdate><title>Graphene nanopores as negative differential resistance devices</title><author>Qiu, Wanzhi ; Nguyen, Phuong Duc ; Skafidas, Efstratios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-be61fd25124152b7e85d8f9dbf0d5a8994bcecc4958d7aa417061166070e6f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>CURRENT DENSITY</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>DIAGRAMS</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRIC POTENTIAL</topic><topic>GRAPHENE</topic><topic>GREEN FUNCTION</topic><topic>Green's functions</topic><topic>HYDROGEN</topic><topic>MEMORY DEVICES</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>NITROGEN</topic><topic>OSCILLATORS</topic><topic>Porosity</topic><topic>Quantum transport</topic><topic>SCATTERING</topic><topic>SWITCHES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Wanzhi</creatorcontrib><creatorcontrib>Nguyen, Phuong Duc</creatorcontrib><creatorcontrib>Skafidas, Efstratios</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Wanzhi</au><au>Nguyen, Phuong Duc</au><au>Skafidas, Efstratios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene nanopores as negative differential resistance devices</atitle><jtitle>Journal of applied physics</jtitle><date>2015-02-07</date><risdate>2015</risdate><volume>117</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene nanoribbons with uniform widths, where the central scattering region has a nanopore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. We show that nitrogen-passivated scattering regions generally result in pronounced NDR properties, while hydrogen-passivated ones do not. This NDR effect occurs at low bias voltages, below 1 V, and achieves extraordinarily high peak-to-valley current ratio, while still attaining very high peak current densities. In addition, very sharp current peaks in the μA range can occur in the I-V curves, and through varying structural dimensions of the proposed structure multiple NDR regions can be realized. These results suggest that the device has promising potential in applications such as high frequency oscillators, memory devices, and fast switches.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4907265</doi><orcidid>https://orcid.org/0000-0003-4263-9972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2015-02, Vol.117 (5)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22413053
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
CURRENT DENSITY
DENSITY FUNCTIONAL METHOD
DIAGRAMS
ELECTRIC CONDUCTIVITY
ELECTRIC POTENTIAL
GRAPHENE
GREEN FUNCTION
Green's functions
HYDROGEN
MEMORY DEVICES
NANOSCIENCE AND NANOTECHNOLOGY
NANOSTRUCTURES
NITROGEN
OSCILLATORS
Porosity
Quantum transport
SCATTERING
SWITCHES
title Graphene nanopores as negative differential resistance devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20nanopores%20as%20negative%20differential%20resistance%20devices&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Qiu,%20Wanzhi&rft.date=2015-02-07&rft.volume=117&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4907265&rft_dat=%3Cproquest_osti_%3E2124907230%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124907230&rft_id=info:pmid/&rfr_iscdi=true