Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer
Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parall...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-02, Vol.106 (8) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 106 |
creator | Ito, Kota Miura, Atsushi Iizuka, Hideo Toshiyoshi, Hiroshi |
description | Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics. |
doi_str_mv | 10.1063/1.4913692 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22412723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4913692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3</originalsourceid><addsrcrecordid>eNotUEtLAzEYDKJgrR78BwFPHlLz2GTdoxRfUNCDnpdvky82kn2QRKX_3q2WOQwzDAMzhFwKvhLcqBuxqhqhTCOPyELwumZKiNtjsuCcK2YaLU7JWc6fs9RSqQUZXyFBjBjZFKEgzV9dH2waB_oBE_Vj6tHRbkf_zB7sNgyzEccf5nDIoezoFGKElPdZOiAk5gNGRxO4ACV8I90iFFoSDNljOicnHmLGiwMvyfvD_dv6iW1eHp_XdxtmlVSFQddonAGOo5Gmq4R0TupOSmGNtZU3WtfccI-d1FXVOMUrA8prEK7TCGpJrv57x1xCm20oaLd2HAa0pZVy7qvn_Uty_Z-ax-Wc0LdTCj2kXSt4u_-zFe3hT_ULbyNpHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ito, Kota ; Miura, Atsushi ; Iizuka, Hideo ; Toshiyoshi, Hiroshi</creator><creatorcontrib>Ito, Kota ; Miura, Atsushi ; Iizuka, Hideo ; Toshiyoshi, Hiroshi</creatorcontrib><description>Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4913692</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DENSITY ; ENERGY CONVERSION ; HEAT FLUX ; INTERFEROMETRY ; MODULATION ; PLATES ; QUARTZ ; STEADY-STATE CONDITIONS ; SUBSTRATES ; SURFACES ; THERMAL CONDUCTION</subject><ispartof>Applied physics letters, 2015-02, Vol.106 (8)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3</citedby><cites>FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3</cites><orcidid>0000-0002-1526-5170 ; 0000-0003-3678-7741 ; 0000-0002-7026-1033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22412723$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Kota</creatorcontrib><creatorcontrib>Miura, Atsushi</creatorcontrib><creatorcontrib>Iizuka, Hideo</creatorcontrib><creatorcontrib>Toshiyoshi, Hiroshi</creatorcontrib><title>Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer</title><title>Applied physics letters</title><description>Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DENSITY</subject><subject>ENERGY CONVERSION</subject><subject>HEAT FLUX</subject><subject>INTERFEROMETRY</subject><subject>MODULATION</subject><subject>PLATES</subject><subject>QUARTZ</subject><subject>STEADY-STATE CONDITIONS</subject><subject>SUBSTRATES</subject><subject>SURFACES</subject><subject>THERMAL CONDUCTION</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotUEtLAzEYDKJgrR78BwFPHlLz2GTdoxRfUNCDnpdvky82kn2QRKX_3q2WOQwzDAMzhFwKvhLcqBuxqhqhTCOPyELwumZKiNtjsuCcK2YaLU7JWc6fs9RSqQUZXyFBjBjZFKEgzV9dH2waB_oBE_Vj6tHRbkf_zB7sNgyzEccf5nDIoezoFGKElPdZOiAk5gNGRxO4ACV8I90iFFoSDNljOicnHmLGiwMvyfvD_dv6iW1eHp_XdxtmlVSFQddonAGOo5Gmq4R0TupOSmGNtZU3WtfccI-d1FXVOMUrA8prEK7TCGpJrv57x1xCm20oaLd2HAa0pZVy7qvn_Uty_Z-ax-Wc0LdTCj2kXSt4u_-zFe3hT_ULbyNpHQ</recordid><startdate>20150223</startdate><enddate>20150223</enddate><creator>Ito, Kota</creator><creator>Miura, Atsushi</creator><creator>Iizuka, Hideo</creator><creator>Toshiyoshi, Hiroshi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1526-5170</orcidid><orcidid>https://orcid.org/0000-0003-3678-7741</orcidid><orcidid>https://orcid.org/0000-0002-7026-1033</orcidid></search><sort><creationdate>20150223</creationdate><title>Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer</title><author>Ito, Kota ; Miura, Atsushi ; Iizuka, Hideo ; Toshiyoshi, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DENSITY</topic><topic>ENERGY CONVERSION</topic><topic>HEAT FLUX</topic><topic>INTERFEROMETRY</topic><topic>MODULATION</topic><topic>PLATES</topic><topic>QUARTZ</topic><topic>STEADY-STATE CONDITIONS</topic><topic>SUBSTRATES</topic><topic>SURFACES</topic><topic>THERMAL CONDUCTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Kota</creatorcontrib><creatorcontrib>Miura, Atsushi</creatorcontrib><creatorcontrib>Iizuka, Hideo</creatorcontrib><creatorcontrib>Toshiyoshi, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Kota</au><au>Miura, Atsushi</au><au>Iizuka, Hideo</au><au>Toshiyoshi, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer</atitle><jtitle>Applied physics letters</jtitle><date>2015-02-23</date><risdate>2015</risdate><volume>106</volume><issue>8</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.</abstract><cop>United States</cop><doi>10.1063/1.4913692</doi><orcidid>https://orcid.org/0000-0002-1526-5170</orcidid><orcidid>https://orcid.org/0000-0003-3678-7741</orcidid><orcidid>https://orcid.org/0000-0002-7026-1033</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-02, Vol.106 (8) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22412723 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DENSITY ENERGY CONVERSION HEAT FLUX INTERFEROMETRY MODULATION PLATES QUARTZ STEADY-STATE CONDITIONS SUBSTRATES SURFACES THERMAL CONDUCTION |
title | Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel-plate%20submicron%20gap%20formed%20by%20micromachined%20low-density%20pillars%20for%20near-field%20radiative%20heat%20transfer&rft.jtitle=Applied%20physics%20letters&rft.au=Ito,%20Kota&rft.date=2015-02-23&rft.volume=106&rft.issue=8&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4913692&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4913692%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |