Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-02, Vol.106 (8)
Hauptverfasser: Ito, Kota, Miura, Atsushi, Iizuka, Hideo, Toshiyoshi, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Applied physics letters
container_volume 106
creator Ito, Kota
Miura, Atsushi
Iizuka, Hideo
Toshiyoshi, Hiroshi
description Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.
doi_str_mv 10.1063/1.4913692
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22412723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4913692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3</originalsourceid><addsrcrecordid>eNotUEtLAzEYDKJgrR78BwFPHlLz2GTdoxRfUNCDnpdvky82kn2QRKX_3q2WOQwzDAMzhFwKvhLcqBuxqhqhTCOPyELwumZKiNtjsuCcK2YaLU7JWc6fs9RSqQUZXyFBjBjZFKEgzV9dH2waB_oBE_Vj6tHRbkf_zB7sNgyzEccf5nDIoezoFGKElPdZOiAk5gNGRxO4ACV8I90iFFoSDNljOicnHmLGiwMvyfvD_dv6iW1eHp_XdxtmlVSFQddonAGOo5Gmq4R0TupOSmGNtZU3WtfccI-d1FXVOMUrA8prEK7TCGpJrv57x1xCm20oaLd2HAa0pZVy7qvn_Uty_Z-ax-Wc0LdTCj2kXSt4u_-zFe3hT_ULbyNpHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ito, Kota ; Miura, Atsushi ; Iizuka, Hideo ; Toshiyoshi, Hiroshi</creator><creatorcontrib>Ito, Kota ; Miura, Atsushi ; Iizuka, Hideo ; Toshiyoshi, Hiroshi</creatorcontrib><description>Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4913692</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DENSITY ; ENERGY CONVERSION ; HEAT FLUX ; INTERFEROMETRY ; MODULATION ; PLATES ; QUARTZ ; STEADY-STATE CONDITIONS ; SUBSTRATES ; SURFACES ; THERMAL CONDUCTION</subject><ispartof>Applied physics letters, 2015-02, Vol.106 (8)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3</citedby><cites>FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3</cites><orcidid>0000-0002-1526-5170 ; 0000-0003-3678-7741 ; 0000-0002-7026-1033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22412723$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Kota</creatorcontrib><creatorcontrib>Miura, Atsushi</creatorcontrib><creatorcontrib>Iizuka, Hideo</creatorcontrib><creatorcontrib>Toshiyoshi, Hiroshi</creatorcontrib><title>Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer</title><title>Applied physics letters</title><description>Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DENSITY</subject><subject>ENERGY CONVERSION</subject><subject>HEAT FLUX</subject><subject>INTERFEROMETRY</subject><subject>MODULATION</subject><subject>PLATES</subject><subject>QUARTZ</subject><subject>STEADY-STATE CONDITIONS</subject><subject>SUBSTRATES</subject><subject>SURFACES</subject><subject>THERMAL CONDUCTION</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotUEtLAzEYDKJgrR78BwFPHlLz2GTdoxRfUNCDnpdvky82kn2QRKX_3q2WOQwzDAMzhFwKvhLcqBuxqhqhTCOPyELwumZKiNtjsuCcK2YaLU7JWc6fs9RSqQUZXyFBjBjZFKEgzV9dH2waB_oBE_Vj6tHRbkf_zB7sNgyzEccf5nDIoezoFGKElPdZOiAk5gNGRxO4ACV8I90iFFoSDNljOicnHmLGiwMvyfvD_dv6iW1eHp_XdxtmlVSFQddonAGOo5Gmq4R0TupOSmGNtZU3WtfccI-d1FXVOMUrA8prEK7TCGpJrv57x1xCm20oaLd2HAa0pZVy7qvn_Uty_Z-ax-Wc0LdTCj2kXSt4u_-zFe3hT_ULbyNpHQ</recordid><startdate>20150223</startdate><enddate>20150223</enddate><creator>Ito, Kota</creator><creator>Miura, Atsushi</creator><creator>Iizuka, Hideo</creator><creator>Toshiyoshi, Hiroshi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1526-5170</orcidid><orcidid>https://orcid.org/0000-0003-3678-7741</orcidid><orcidid>https://orcid.org/0000-0002-7026-1033</orcidid></search><sort><creationdate>20150223</creationdate><title>Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer</title><author>Ito, Kota ; Miura, Atsushi ; Iizuka, Hideo ; Toshiyoshi, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DENSITY</topic><topic>ENERGY CONVERSION</topic><topic>HEAT FLUX</topic><topic>INTERFEROMETRY</topic><topic>MODULATION</topic><topic>PLATES</topic><topic>QUARTZ</topic><topic>STEADY-STATE CONDITIONS</topic><topic>SUBSTRATES</topic><topic>SURFACES</topic><topic>THERMAL CONDUCTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Kota</creatorcontrib><creatorcontrib>Miura, Atsushi</creatorcontrib><creatorcontrib>Iizuka, Hideo</creatorcontrib><creatorcontrib>Toshiyoshi, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Kota</au><au>Miura, Atsushi</au><au>Iizuka, Hideo</au><au>Toshiyoshi, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer</atitle><jtitle>Applied physics letters</jtitle><date>2015-02-23</date><risdate>2015</risdate><volume>106</volume><issue>8</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.</abstract><cop>United States</cop><doi>10.1063/1.4913692</doi><orcidid>https://orcid.org/0000-0002-1526-5170</orcidid><orcidid>https://orcid.org/0000-0003-3678-7741</orcidid><orcidid>https://orcid.org/0000-0002-7026-1033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-02, Vol.106 (8)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22412723
source AIP Journals Complete; Alma/SFX Local Collection
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DENSITY
ENERGY CONVERSION
HEAT FLUX
INTERFEROMETRY
MODULATION
PLATES
QUARTZ
STEADY-STATE CONDITIONS
SUBSTRATES
SURFACES
THERMAL CONDUCTION
title Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel-plate%20submicron%20gap%20formed%20by%20micromachined%20low-density%20pillars%20for%20near-field%20radiative%20heat%20transfer&rft.jtitle=Applied%20physics%20letters&rft.au=Ito,%20Kota&rft.date=2015-02-23&rft.volume=106&rft.issue=8&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4913692&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4913692%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true