The Sharma-Parthasarathy stochastic two-body problem
We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-bod...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2015-03, Vol.56 (3), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 56 |
creator | Cresson, J. Pierret, F. Puig, B. |
description | We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case. |
doi_str_mv | 10.1063/1.4906908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22403122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3657345191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-61ebc46659000246bf1e071f8adab6f232e4142170407bb19a55e66be15b3c093</originalsourceid><addsrcrecordid>eNp9kUFLAzEQhYMoWKsH_8GCJw9bZ5JsNnssRa1QULCeQ5Jm2S1tU5NU6b83xWJvnoYZPt6bN0PILcIIQbAHHPEGRAPyjAwQZFPWopLnZABAaUm5lJfkKsYlAKLkfED4vHPFe6fDWpdvOqRORx106vZFTN7mLvW2SN--NH6xL7bBm5VbX5OLVq-iuznWIfl4epxPpuXs9fllMp6VlkmaSoHOWC5E1UC258K06KDGVuqFNqKljDqOnGINHGpjsNFV5YQwDivDLDRsSO5-dX1eQ0XbJ2c76zcbZ5OilANDSjN1_0t1eqW2oV_rsFde92o6nqnDDCgykQN_4UkxJ_ncuZjU0u_CJodQFPN5aiax_o9CkRGGOdPJ1wYfY3DtnzmCOjxDoTo-g_0AsiV24g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673831659</pqid></control><display><type>article</type><title>The Sharma-Parthasarathy stochastic two-body problem</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cresson, J. ; Pierret, F. ; Puig, B.</creator><creatorcontrib>Cresson, J. ; Pierret, F. ; Puig, B.</creatorcontrib><description>We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4906908</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Chaos theory ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; COMPUTERIZED SIMULATION ; Debates ; Dynamical systems ; EQUATIONS ; HAMILTONIANS ; INTEGRALS ; Mathematical problems ; Mathematics ; Numerical analysis ; Physics ; Quantum physics ; Stochastic models ; STOCHASTIC PROCESSES ; TWO-BODY PROBLEM</subject><ispartof>Journal of mathematical physics, 2015-03, Vol.56 (3), p.1</ispartof><rights>Copyright American Institute of Physics Mar 2015</rights><rights>2015 AIP Publishing LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-61ebc46659000246bf1e071f8adab6f232e4142170407bb19a55e66be15b3c093</citedby><cites>FETCH-LOGICAL-c382t-61ebc46659000246bf1e071f8adab6f232e4142170407bb19a55e66be15b3c093</cites><orcidid>0000-0002-0936-624X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02136011$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22403122$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cresson, J.</creatorcontrib><creatorcontrib>Pierret, F.</creatorcontrib><creatorcontrib>Puig, B.</creatorcontrib><title>The Sharma-Parthasarathy stochastic two-body problem</title><title>Journal of mathematical physics</title><description>We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.</description><subject>Chaos theory</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Debates</subject><subject>Dynamical systems</subject><subject>EQUATIONS</subject><subject>HAMILTONIANS</subject><subject>INTEGRALS</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Stochastic models</subject><subject>STOCHASTIC PROCESSES</subject><subject>TWO-BODY PROBLEM</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kUFLAzEQhYMoWKsH_8GCJw9bZ5JsNnssRa1QULCeQ5Jm2S1tU5NU6b83xWJvnoYZPt6bN0PILcIIQbAHHPEGRAPyjAwQZFPWopLnZABAaUm5lJfkKsYlAKLkfED4vHPFe6fDWpdvOqRORx106vZFTN7mLvW2SN--NH6xL7bBm5VbX5OLVq-iuznWIfl4epxPpuXs9fllMp6VlkmaSoHOWC5E1UC258K06KDGVuqFNqKljDqOnGINHGpjsNFV5YQwDivDLDRsSO5-dX1eQ0XbJ2c76zcbZ5OilANDSjN1_0t1eqW2oV_rsFde92o6nqnDDCgykQN_4UkxJ_ncuZjU0u_CJodQFPN5aiax_o9CkRGGOdPJ1wYfY3DtnzmCOjxDoTo-g_0AsiV24g</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Cresson, J.</creator><creator>Pierret, F.</creator><creator>Puig, B.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0936-624X</orcidid></search><sort><creationdate>20150301</creationdate><title>The Sharma-Parthasarathy stochastic two-body problem</title><author>Cresson, J. ; Pierret, F. ; Puig, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-61ebc46659000246bf1e071f8adab6f232e4142170407bb19a55e66be15b3c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chaos theory</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Debates</topic><topic>Dynamical systems</topic><topic>EQUATIONS</topic><topic>HAMILTONIANS</topic><topic>INTEGRALS</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Stochastic models</topic><topic>STOCHASTIC PROCESSES</topic><topic>TWO-BODY PROBLEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cresson, J.</creatorcontrib><creatorcontrib>Pierret, F.</creatorcontrib><creatorcontrib>Puig, B.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cresson, J.</au><au>Pierret, F.</au><au>Puig, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Sharma-Parthasarathy stochastic two-body problem</atitle><jtitle>Journal of mathematical physics</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>56</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4906908</doi><orcidid>https://orcid.org/0000-0002-0936-624X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2015-03, Vol.56 (3), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_osti_scitechconnect_22403122 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Chaos theory CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer simulation COMPUTERIZED SIMULATION Debates Dynamical systems EQUATIONS HAMILTONIANS INTEGRALS Mathematical problems Mathematics Numerical analysis Physics Quantum physics Stochastic models STOCHASTIC PROCESSES TWO-BODY PROBLEM |
title | The Sharma-Parthasarathy stochastic two-body problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Sharma-Parthasarathy%20stochastic%20two-body%20problem&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Cresson,%20J.&rft.date=2015-03-01&rft.volume=56&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4906908&rft_dat=%3Cproquest_osti_%3E3657345191%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673831659&rft_id=info:pmid/&rfr_iscdi=true |