The Sharma-Parthasarathy stochastic two-body problem

We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-bod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2015-03, Vol.56 (3), p.1
Hauptverfasser: Cresson, J., Pierret, F., Puig, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1
container_title Journal of mathematical physics
container_volume 56
creator Cresson, J.
Pierret, F.
Puig, B.
description We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.
doi_str_mv 10.1063/1.4906908
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22403122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3657345191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-61ebc46659000246bf1e071f8adab6f232e4142170407bb19a55e66be15b3c093</originalsourceid><addsrcrecordid>eNp9kUFLAzEQhYMoWKsH_8GCJw9bZ5JsNnssRa1QULCeQ5Jm2S1tU5NU6b83xWJvnoYZPt6bN0PILcIIQbAHHPEGRAPyjAwQZFPWopLnZABAaUm5lJfkKsYlAKLkfED4vHPFe6fDWpdvOqRORx106vZFTN7mLvW2SN--NH6xL7bBm5VbX5OLVq-iuznWIfl4epxPpuXs9fllMp6VlkmaSoHOWC5E1UC258K06KDGVuqFNqKljDqOnGINHGpjsNFV5YQwDivDLDRsSO5-dX1eQ0XbJ2c76zcbZ5OilANDSjN1_0t1eqW2oV_rsFde92o6nqnDDCgykQN_4UkxJ_ncuZjU0u_CJodQFPN5aiax_o9CkRGGOdPJ1wYfY3DtnzmCOjxDoTo-g_0AsiV24g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673831659</pqid></control><display><type>article</type><title>The Sharma-Parthasarathy stochastic two-body problem</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cresson, J. ; Pierret, F. ; Puig, B.</creator><creatorcontrib>Cresson, J. ; Pierret, F. ; Puig, B.</creatorcontrib><description>We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4906908</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Chaos theory ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; COMPUTERIZED SIMULATION ; Debates ; Dynamical systems ; EQUATIONS ; HAMILTONIANS ; INTEGRALS ; Mathematical problems ; Mathematics ; Numerical analysis ; Physics ; Quantum physics ; Stochastic models ; STOCHASTIC PROCESSES ; TWO-BODY PROBLEM</subject><ispartof>Journal of mathematical physics, 2015-03, Vol.56 (3), p.1</ispartof><rights>Copyright American Institute of Physics Mar 2015</rights><rights>2015 AIP Publishing LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-61ebc46659000246bf1e071f8adab6f232e4142170407bb19a55e66be15b3c093</citedby><cites>FETCH-LOGICAL-c382t-61ebc46659000246bf1e071f8adab6f232e4142170407bb19a55e66be15b3c093</cites><orcidid>0000-0002-0936-624X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02136011$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22403122$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cresson, J.</creatorcontrib><creatorcontrib>Pierret, F.</creatorcontrib><creatorcontrib>Puig, B.</creatorcontrib><title>The Sharma-Parthasarathy stochastic two-body problem</title><title>Journal of mathematical physics</title><description>We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.</description><subject>Chaos theory</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Debates</subject><subject>Dynamical systems</subject><subject>EQUATIONS</subject><subject>HAMILTONIANS</subject><subject>INTEGRALS</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Stochastic models</subject><subject>STOCHASTIC PROCESSES</subject><subject>TWO-BODY PROBLEM</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kUFLAzEQhYMoWKsH_8GCJw9bZ5JsNnssRa1QULCeQ5Jm2S1tU5NU6b83xWJvnoYZPt6bN0PILcIIQbAHHPEGRAPyjAwQZFPWopLnZABAaUm5lJfkKsYlAKLkfED4vHPFe6fDWpdvOqRORx106vZFTN7mLvW2SN--NH6xL7bBm5VbX5OLVq-iuznWIfl4epxPpuXs9fllMp6VlkmaSoHOWC5E1UC258K06KDGVuqFNqKljDqOnGINHGpjsNFV5YQwDivDLDRsSO5-dX1eQ0XbJ2c76zcbZ5OilANDSjN1_0t1eqW2oV_rsFde92o6nqnDDCgykQN_4UkxJ_ncuZjU0u_CJodQFPN5aiax_o9CkRGGOdPJ1wYfY3DtnzmCOjxDoTo-g_0AsiV24g</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Cresson, J.</creator><creator>Pierret, F.</creator><creator>Puig, B.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0936-624X</orcidid></search><sort><creationdate>20150301</creationdate><title>The Sharma-Parthasarathy stochastic two-body problem</title><author>Cresson, J. ; Pierret, F. ; Puig, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-61ebc46659000246bf1e071f8adab6f232e4142170407bb19a55e66be15b3c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chaos theory</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Debates</topic><topic>Dynamical systems</topic><topic>EQUATIONS</topic><topic>HAMILTONIANS</topic><topic>INTEGRALS</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Stochastic models</topic><topic>STOCHASTIC PROCESSES</topic><topic>TWO-BODY PROBLEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cresson, J.</creatorcontrib><creatorcontrib>Pierret, F.</creatorcontrib><creatorcontrib>Puig, B.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cresson, J.</au><au>Pierret, F.</au><au>Puig, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Sharma-Parthasarathy stochastic two-body problem</atitle><jtitle>Journal of mathematical physics</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>56</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4906908</doi><orcidid>https://orcid.org/0000-0002-0936-624X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2015-03, Vol.56 (3), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_osti_scitechconnect_22403122
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chaos theory
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer simulation
COMPUTERIZED SIMULATION
Debates
Dynamical systems
EQUATIONS
HAMILTONIANS
INTEGRALS
Mathematical problems
Mathematics
Numerical analysis
Physics
Quantum physics
Stochastic models
STOCHASTIC PROCESSES
TWO-BODY PROBLEM
title The Sharma-Parthasarathy stochastic two-body problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Sharma-Parthasarathy%20stochastic%20two-body%20problem&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Cresson,%20J.&rft.date=2015-03-01&rft.volume=56&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4906908&rft_dat=%3Cproquest_osti_%3E3657345191%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673831659&rft_id=info:pmid/&rfr_iscdi=true