Detector-device-independent quantum key distribution
Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-12, Vol.105 (22) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 105 |
creator | Lim, Charles Ci Wen Korzh, Boris Martin, Anthony Bussières, Félix Thew, Rob Zbinden, Hugo |
description | Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects. |
doi_str_mv | 10.1063/1.4903350 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22402386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126490636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-973c94f1b3f7d0557b3393ad528826aaf1a9b81c5e651b8fe72a84419ab9268c3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQQIMoWKsH_6DgyUNqJrPJJkepVoWCFz2HbDaLqTbbJlmhf--WFrzMMPAYHo-QW2BzYBIfYF5phijYGZkAq2uKAOqcTBhjSKUWcEmucl6Pp-CIE1I9-eJd6RNt_W9wnobY-q0fRyyz3WBjGTazb7-ftSGXFJqhhD5ek4vO_mR_c9pT8rl8_li80tX7y9vicUUdclaortHpqoMGu7plQtQNokbbCq4Ul9Z2YHWjwAkvBTSq8zW3qqpA20ZzqRxOyd3xb59LMNmFUfXL9TGOxobzinFU8p_apn43-FzMuh9SHMUMBy7HHhIP1P2RcqnPOfnObFPY2LQ3wMwhnQFzSod_AVteWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126490636</pqid></control><display><type>article</type><title>Detector-device-independent quantum key distribution</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Lim, Charles Ci Wen ; Korzh, Boris ; Martin, Anthony ; Bussières, Félix ; Thew, Rob ; Zbinden, Hugo</creator><creatorcontrib>Lim, Charles Ci Wen ; Korzh, Boris ; Martin, Anthony ; Bussières, Félix ; Thew, Rob ; Zbinden, Hugo</creatorcontrib><description>Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4903350</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EFFICIENCY ; INTERFERENCE ; PHOTONS ; Quantum cryptography ; QUANTUM ENTANGLEMENT ; QUBITS ; Qubits (quantum computing)</subject><ispartof>Applied physics letters, 2014-12, Vol.105 (22)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-973c94f1b3f7d0557b3393ad528826aaf1a9b81c5e651b8fe72a84419ab9268c3</citedby><cites>FETCH-LOGICAL-c320t-973c94f1b3f7d0557b3393ad528826aaf1a9b81c5e651b8fe72a84419ab9268c3</cites><orcidid>0000-0002-8262-9720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22402386$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Charles Ci Wen</creatorcontrib><creatorcontrib>Korzh, Boris</creatorcontrib><creatorcontrib>Martin, Anthony</creatorcontrib><creatorcontrib>Bussières, Félix</creatorcontrib><creatorcontrib>Thew, Rob</creatorcontrib><creatorcontrib>Zbinden, Hugo</creatorcontrib><title>Detector-device-independent quantum key distribution</title><title>Applied physics letters</title><description>Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects.</description><subject>Applied physics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EFFICIENCY</subject><subject>INTERFERENCE</subject><subject>PHOTONS</subject><subject>Quantum cryptography</subject><subject>QUANTUM ENTANGLEMENT</subject><subject>QUBITS</subject><subject>Qubits (quantum computing)</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKAzEQQIMoWKsH_6DgyUNqJrPJJkepVoWCFz2HbDaLqTbbJlmhf--WFrzMMPAYHo-QW2BzYBIfYF5phijYGZkAq2uKAOqcTBhjSKUWcEmucl6Pp-CIE1I9-eJd6RNt_W9wnobY-q0fRyyz3WBjGTazb7-ftSGXFJqhhD5ek4vO_mR_c9pT8rl8_li80tX7y9vicUUdclaortHpqoMGu7plQtQNokbbCq4Ul9Z2YHWjwAkvBTSq8zW3qqpA20ZzqRxOyd3xb59LMNmFUfXL9TGOxobzinFU8p_apn43-FzMuh9SHMUMBy7HHhIP1P2RcqnPOfnObFPY2LQ3wMwhnQFzSod_AVteWA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lim, Charles Ci Wen</creator><creator>Korzh, Boris</creator><creator>Martin, Anthony</creator><creator>Bussières, Félix</creator><creator>Thew, Rob</creator><creator>Zbinden, Hugo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8262-9720</orcidid></search><sort><creationdate>20141201</creationdate><title>Detector-device-independent quantum key distribution</title><author>Lim, Charles Ci Wen ; Korzh, Boris ; Martin, Anthony ; Bussières, Félix ; Thew, Rob ; Zbinden, Hugo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-973c94f1b3f7d0557b3393ad528826aaf1a9b81c5e651b8fe72a84419ab9268c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EFFICIENCY</topic><topic>INTERFERENCE</topic><topic>PHOTONS</topic><topic>Quantum cryptography</topic><topic>QUANTUM ENTANGLEMENT</topic><topic>QUBITS</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Charles Ci Wen</creatorcontrib><creatorcontrib>Korzh, Boris</creatorcontrib><creatorcontrib>Martin, Anthony</creatorcontrib><creatorcontrib>Bussières, Félix</creatorcontrib><creatorcontrib>Thew, Rob</creatorcontrib><creatorcontrib>Zbinden, Hugo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Charles Ci Wen</au><au>Korzh, Boris</au><au>Martin, Anthony</au><au>Bussières, Félix</au><au>Thew, Rob</au><au>Zbinden, Hugo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detector-device-independent quantum key distribution</atitle><jtitle>Applied physics letters</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>105</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4903350</doi><orcidid>https://orcid.org/0000-0002-8262-9720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-12, Vol.105 (22) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22402386 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Applied physics CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS EFFICIENCY INTERFERENCE PHOTONS Quantum cryptography QUANTUM ENTANGLEMENT QUBITS Qubits (quantum computing) |
title | Detector-device-independent quantum key distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detector-device-independent%20quantum%20key%20distribution&rft.jtitle=Applied%20physics%20letters&rft.au=Lim,%20Charles%20Ci%20Wen&rft.date=2014-12-01&rft.volume=105&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4903350&rft_dat=%3Cproquest_osti_%3E2126490636%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126490636&rft_id=info:pmid/&rfr_iscdi=true |