Si/Ge hetero-structure nanotube tunnel field effect transistor
We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-01, Vol.117 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 117 |
creator | Hanna, A. N. Hussain, M. M. |
description | We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd = 1 V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60 mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5 V. |
doi_str_mv | 10.1063/1.4905423 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22399219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124942701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-fd5be991be4fb0db2e5dc3b5a90f9118489040f2ba8cb517e116a76d52f9e2f93</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKsL_8GAKxfTvpePmclGkKJVKLhQ12GSeaFT6qQmmYX_3pF24eJyN4fL4TJ2i7BAqMQSF1KDklycsRlCo8taKThnMwCOZaNrfcmuUtoBIDZCz9jDe79cU7GlTDGUKcfR5TFSMbRDyKOlIo_DQPvC97TvCvKeXC5ybIfUpxziNbvw7T7Rzann7PP56WP1Um7e1q-rx03pRIW59J2ypDVakt5CZzmpzgmrWg1eTyay0SDBc9s2ziqsCbFq66pT3GuaIubs7rgbUu5Ncn0mt3VhUnPZcC605viPOsTwPVLKZhfGOExihiOXWvIacKLuj5SLIaVI3hxi_9XGH4Ng_k40aE4nil_oRGLB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124942701</pqid></control><display><type>article</type><title>Si/Ge hetero-structure nanotube tunnel field effect transistor</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hanna, A. N. ; Hussain, M. M.</creator><creatorcontrib>Hanna, A. N. ; Hussain, M. M.</creatorcontrib><description>We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd = 1 V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60 mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5 V.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4905423</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Architecture ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Configuration management ; ELECTRIC CURRENTS ; FIELD EFFECT TRANSISTORS ; GERMANIUM ; HALL EFFECT ; HETEROJUNCTIONS ; NANOTUBES ; Nanowires ; RECOMBINATION ; Semiconductor devices ; SILICON ; Topology ; Transistors ; TUNNEL EFFECT</subject><ispartof>Journal of applied physics, 2015-01, Vol.117 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-fd5be991be4fb0db2e5dc3b5a90f9118489040f2ba8cb517e116a76d52f9e2f93</citedby><cites>FETCH-LOGICAL-c361t-fd5be991be4fb0db2e5dc3b5a90f9118489040f2ba8cb517e116a76d52f9e2f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22399219$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanna, A. N.</creatorcontrib><creatorcontrib>Hussain, M. M.</creatorcontrib><title>Si/Ge hetero-structure nanotube tunnel field effect transistor</title><title>Journal of applied physics</title><description>We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd = 1 V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60 mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5 V.</description><subject>Applied physics</subject><subject>Architecture</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Configuration management</subject><subject>ELECTRIC CURRENTS</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>GERMANIUM</subject><subject>HALL EFFECT</subject><subject>HETEROJUNCTIONS</subject><subject>NANOTUBES</subject><subject>Nanowires</subject><subject>RECOMBINATION</subject><subject>Semiconductor devices</subject><subject>SILICON</subject><subject>Topology</subject><subject>Transistors</subject><subject>TUNNEL EFFECT</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEURYMoWKsL_8GAKxfTvpePmclGkKJVKLhQ12GSeaFT6qQmmYX_3pF24eJyN4fL4TJ2i7BAqMQSF1KDklycsRlCo8taKThnMwCOZaNrfcmuUtoBIDZCz9jDe79cU7GlTDGUKcfR5TFSMbRDyKOlIo_DQPvC97TvCvKeXC5ybIfUpxziNbvw7T7Rzann7PP56WP1Um7e1q-rx03pRIW59J2ypDVakt5CZzmpzgmrWg1eTyay0SDBc9s2ziqsCbFq66pT3GuaIubs7rgbUu5Ncn0mt3VhUnPZcC605viPOsTwPVLKZhfGOExihiOXWvIacKLuj5SLIaVI3hxi_9XGH4Ng_k40aE4nil_oRGLB</recordid><startdate>20150107</startdate><enddate>20150107</enddate><creator>Hanna, A. N.</creator><creator>Hussain, M. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150107</creationdate><title>Si/Ge hetero-structure nanotube tunnel field effect transistor</title><author>Hanna, A. N. ; Hussain, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-fd5be991be4fb0db2e5dc3b5a90f9118489040f2ba8cb517e116a76d52f9e2f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>Architecture</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Configuration management</topic><topic>ELECTRIC CURRENTS</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>GERMANIUM</topic><topic>HALL EFFECT</topic><topic>HETEROJUNCTIONS</topic><topic>NANOTUBES</topic><topic>Nanowires</topic><topic>RECOMBINATION</topic><topic>Semiconductor devices</topic><topic>SILICON</topic><topic>Topology</topic><topic>Transistors</topic><topic>TUNNEL EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanna, A. N.</creatorcontrib><creatorcontrib>Hussain, M. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanna, A. N.</au><au>Hussain, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si/Ge hetero-structure nanotube tunnel field effect transistor</atitle><jtitle>Journal of applied physics</jtitle><date>2015-01-07</date><risdate>2015</risdate><volume>117</volume><issue>1</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd = 1 V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60 mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5 V.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4905423</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2015-01, Vol.117 (1) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22399219 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Architecture CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPARATIVE EVALUATIONS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Configuration management ELECTRIC CURRENTS FIELD EFFECT TRANSISTORS GERMANIUM HALL EFFECT HETEROJUNCTIONS NANOTUBES Nanowires RECOMBINATION Semiconductor devices SILICON Topology Transistors TUNNEL EFFECT |
title | Si/Ge hetero-structure nanotube tunnel field effect transistor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si/Ge%20hetero-structure%20nanotube%20tunnel%20field%20effect%20transistor&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hanna,%20A.%20N.&rft.date=2015-01-07&rft.volume=117&rft.issue=1&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4905423&rft_dat=%3Cproquest_osti_%3E2124942701%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124942701&rft_id=info:pmid/&rfr_iscdi=true |