Si/Ge hetero-structure nanotube tunnel field effect transistor

We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-01, Vol.117 (1)
Hauptverfasser: Hanna, A. N., Hussain, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of applied physics
container_volume 117
creator Hanna, A. N.
Hussain, M. M.
description We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd = 1 V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60 mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5 V.
doi_str_mv 10.1063/1.4905423
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22399219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124942701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-fd5be991be4fb0db2e5dc3b5a90f9118489040f2ba8cb517e116a76d52f9e2f93</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKsL_8GAKxfTvpePmclGkKJVKLhQ12GSeaFT6qQmmYX_3pF24eJyN4fL4TJ2i7BAqMQSF1KDklycsRlCo8taKThnMwCOZaNrfcmuUtoBIDZCz9jDe79cU7GlTDGUKcfR5TFSMbRDyKOlIo_DQPvC97TvCvKeXC5ybIfUpxziNbvw7T7Rzann7PP56WP1Um7e1q-rx03pRIW59J2ypDVakt5CZzmpzgmrWg1eTyay0SDBc9s2ziqsCbFq66pT3GuaIubs7rgbUu5Ncn0mt3VhUnPZcC605viPOsTwPVLKZhfGOExihiOXWvIacKLuj5SLIaVI3hxi_9XGH4Ng_k40aE4nil_oRGLB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124942701</pqid></control><display><type>article</type><title>Si/Ge hetero-structure nanotube tunnel field effect transistor</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hanna, A. N. ; Hussain, M. M.</creator><creatorcontrib>Hanna, A. N. ; Hussain, M. M.</creatorcontrib><description>We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd = 1 V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60 mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5 V.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4905423</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Architecture ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Configuration management ; ELECTRIC CURRENTS ; FIELD EFFECT TRANSISTORS ; GERMANIUM ; HALL EFFECT ; HETEROJUNCTIONS ; NANOTUBES ; Nanowires ; RECOMBINATION ; Semiconductor devices ; SILICON ; Topology ; Transistors ; TUNNEL EFFECT</subject><ispartof>Journal of applied physics, 2015-01, Vol.117 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-fd5be991be4fb0db2e5dc3b5a90f9118489040f2ba8cb517e116a76d52f9e2f93</citedby><cites>FETCH-LOGICAL-c361t-fd5be991be4fb0db2e5dc3b5a90f9118489040f2ba8cb517e116a76d52f9e2f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22399219$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanna, A. N.</creatorcontrib><creatorcontrib>Hussain, M. M.</creatorcontrib><title>Si/Ge hetero-structure nanotube tunnel field effect transistor</title><title>Journal of applied physics</title><description>We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd = 1 V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60 mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5 V.</description><subject>Applied physics</subject><subject>Architecture</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Configuration management</subject><subject>ELECTRIC CURRENTS</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>GERMANIUM</subject><subject>HALL EFFECT</subject><subject>HETEROJUNCTIONS</subject><subject>NANOTUBES</subject><subject>Nanowires</subject><subject>RECOMBINATION</subject><subject>Semiconductor devices</subject><subject>SILICON</subject><subject>Topology</subject><subject>Transistors</subject><subject>TUNNEL EFFECT</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEURYMoWKsL_8GAKxfTvpePmclGkKJVKLhQ12GSeaFT6qQmmYX_3pF24eJyN4fL4TJ2i7BAqMQSF1KDklycsRlCo8taKThnMwCOZaNrfcmuUtoBIDZCz9jDe79cU7GlTDGUKcfR5TFSMbRDyKOlIo_DQPvC97TvCvKeXC5ybIfUpxziNbvw7T7Rzann7PP56WP1Um7e1q-rx03pRIW59J2ypDVakt5CZzmpzgmrWg1eTyay0SDBc9s2ziqsCbFq66pT3GuaIubs7rgbUu5Ncn0mt3VhUnPZcC605viPOsTwPVLKZhfGOExihiOXWvIacKLuj5SLIaVI3hxi_9XGH4Ng_k40aE4nil_oRGLB</recordid><startdate>20150107</startdate><enddate>20150107</enddate><creator>Hanna, A. N.</creator><creator>Hussain, M. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150107</creationdate><title>Si/Ge hetero-structure nanotube tunnel field effect transistor</title><author>Hanna, A. N. ; Hussain, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-fd5be991be4fb0db2e5dc3b5a90f9118489040f2ba8cb517e116a76d52f9e2f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>Architecture</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Configuration management</topic><topic>ELECTRIC CURRENTS</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>GERMANIUM</topic><topic>HALL EFFECT</topic><topic>HETEROJUNCTIONS</topic><topic>NANOTUBES</topic><topic>Nanowires</topic><topic>RECOMBINATION</topic><topic>Semiconductor devices</topic><topic>SILICON</topic><topic>Topology</topic><topic>Transistors</topic><topic>TUNNEL EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanna, A. N.</creatorcontrib><creatorcontrib>Hussain, M. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanna, A. N.</au><au>Hussain, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si/Ge hetero-structure nanotube tunnel field effect transistor</atitle><jtitle>Journal of applied physics</jtitle><date>2015-01-07</date><risdate>2015</risdate><volume>117</volume><issue>1</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd = 1 V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60 mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5 V.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4905423</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2015-01, Vol.117 (1)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22399219
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Architecture
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPARATIVE EVALUATIONS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Configuration management
ELECTRIC CURRENTS
FIELD EFFECT TRANSISTORS
GERMANIUM
HALL EFFECT
HETEROJUNCTIONS
NANOTUBES
Nanowires
RECOMBINATION
Semiconductor devices
SILICON
Topology
Transistors
TUNNEL EFFECT
title Si/Ge hetero-structure nanotube tunnel field effect transistor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si/Ge%20hetero-structure%20nanotube%20tunnel%20field%20effect%20transistor&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hanna,%20A.%20N.&rft.date=2015-01-07&rft.volume=117&rft.issue=1&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4905423&rft_dat=%3Cproquest_osti_%3E2124942701%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124942701&rft_id=info:pmid/&rfr_iscdi=true