Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals

The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-05, Vol.106 (18)
Hauptverfasser: Wang, Wenyi, Klots, Andrey, Yang, Yuanmu, Li, Wei, Kravchenko, Ivan I., Briggs, Dayrl P., Bolotin, Kirill I., Valentine, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Applied physics letters
container_volume 106
creator Wang, Wenyi
Klots, Andrey
Yang, Yuanmu
Li, Wei
Kravchenko, Ivan I.
Briggs, Dayrl P.
Bolotin, Kirill I.
Valentine, Jason
description The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.
doi_str_mv 10.1063/1.4919760
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22398987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124835072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-c1b10ffc5a3e5a30643d49002a00cc0a1636714901fb4cf5637d71fc50b2f413</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWKsH_0HAk4etM8lusnuU0qpQ8NJ7yGazNKVNapIq_fdGWvAwPObNx8B7hDwizBAEf8FZ3WEnBVyRCYKUFUdsr8kEAHglugZvyV1K27I2jPMJWS_8RntjB6r7FOIhu-Cp8zT_hGpwe-tTMfSO7nW20eldot9O06X2oYo2lZPP9LAJOXhnqImnlAtzT27GIvbholOyXi7W8_dq9fn2MX9dVYa3IlcGe4RxNI3mtgyImg91B8A0gDGgUXAhsTg49rUZG8HlILHw0LOxRj4lT-e3IWWnknHZmo0J3luTFWO8a7tW_lOHGL6ONmW1DcdYMiXFkNUtb0CyQj2fKRNDStGO6hDdXseTQlB_zSpUl2b5L6Fpagk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124835072</pqid></control><display><type>article</type><title>Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Wenyi ; Klots, Andrey ; Yang, Yuanmu ; Li, Wei ; Kravchenko, Ivan I. ; Briggs, Dayrl P. ; Bolotin, Kirill I. ; Valentine, Jason</creator><creatorcontrib>Wang, Wenyi ; Klots, Andrey ; Yang, Yuanmu ; Li, Wei ; Kravchenko, Ivan I. ; Briggs, Dayrl P. ; Bolotin, Kirill I. ; Valentine, Jason</creatorcontrib><description>The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4919760</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ABSORPTION ; Applied physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTALS ; ELECTRICAL PROPERTIES ; ELECTRODES ; FIELD EFFECT TRANSISTORS ; GRAPHENE ; INTERFACES ; LIGHT TRANSMISSION ; Molybdenum disulfide ; MOLYBDENUM SULFIDES ; Monolayers ; Near infrared radiation ; OPTICAL PROPERTIES ; Optoelectronics ; PHOTODETECTORS ; Photonic crystals ; QUANTUM EFFICIENCY ; Two dimensional materials ; TWO-DIMENSIONAL CALCULATIONS ; TWO-DIMENSIONAL SYSTEMS ; VISIBLE RADIATION</subject><ispartof>Applied physics letters, 2015-05, Vol.106 (18)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-c1b10ffc5a3e5a30643d49002a00cc0a1636714901fb4cf5637d71fc50b2f413</citedby><cites>FETCH-LOGICAL-c386t-c1b10ffc5a3e5a30643d49002a00cc0a1636714901fb4cf5637d71fc50b2f413</cites><orcidid>0000-0002-2227-9431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22398987$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wenyi</creatorcontrib><creatorcontrib>Klots, Andrey</creatorcontrib><creatorcontrib>Yang, Yuanmu</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Kravchenko, Ivan I.</creatorcontrib><creatorcontrib>Briggs, Dayrl P.</creatorcontrib><creatorcontrib>Bolotin, Kirill I.</creatorcontrib><creatorcontrib>Valentine, Jason</creatorcontrib><title>Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals</title><title>Applied physics letters</title><description>The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.</description><subject>ABSORPTION</subject><subject>Applied physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTALS</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTRODES</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>GRAPHENE</subject><subject>INTERFACES</subject><subject>LIGHT TRANSMISSION</subject><subject>Molybdenum disulfide</subject><subject>MOLYBDENUM SULFIDES</subject><subject>Monolayers</subject><subject>Near infrared radiation</subject><subject>OPTICAL PROPERTIES</subject><subject>Optoelectronics</subject><subject>PHOTODETECTORS</subject><subject>Photonic crystals</subject><subject>QUANTUM EFFICIENCY</subject><subject>Two dimensional materials</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><subject>VISIBLE RADIATION</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWKsH_0HAk4etM8lusnuU0qpQ8NJ7yGazNKVNapIq_fdGWvAwPObNx8B7hDwizBAEf8FZ3WEnBVyRCYKUFUdsr8kEAHglugZvyV1K27I2jPMJWS_8RntjB6r7FOIhu-Cp8zT_hGpwe-tTMfSO7nW20eldot9O06X2oYo2lZPP9LAJOXhnqImnlAtzT27GIvbholOyXi7W8_dq9fn2MX9dVYa3IlcGe4RxNI3mtgyImg91B8A0gDGgUXAhsTg49rUZG8HlILHw0LOxRj4lT-e3IWWnknHZmo0J3luTFWO8a7tW_lOHGL6ONmW1DcdYMiXFkNUtb0CyQj2fKRNDStGO6hDdXseTQlB_zSpUl2b5L6Fpagk</recordid><startdate>20150504</startdate><enddate>20150504</enddate><creator>Wang, Wenyi</creator><creator>Klots, Andrey</creator><creator>Yang, Yuanmu</creator><creator>Li, Wei</creator><creator>Kravchenko, Ivan I.</creator><creator>Briggs, Dayrl P.</creator><creator>Bolotin, Kirill I.</creator><creator>Valentine, Jason</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2227-9431</orcidid></search><sort><creationdate>20150504</creationdate><title>Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals</title><author>Wang, Wenyi ; Klots, Andrey ; Yang, Yuanmu ; Li, Wei ; Kravchenko, Ivan I. ; Briggs, Dayrl P. ; Bolotin, Kirill I. ; Valentine, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-c1b10ffc5a3e5a30643d49002a00cc0a1636714901fb4cf5637d71fc50b2f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ABSORPTION</topic><topic>Applied physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTALS</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTRODES</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>GRAPHENE</topic><topic>INTERFACES</topic><topic>LIGHT TRANSMISSION</topic><topic>Molybdenum disulfide</topic><topic>MOLYBDENUM SULFIDES</topic><topic>Monolayers</topic><topic>Near infrared radiation</topic><topic>OPTICAL PROPERTIES</topic><topic>Optoelectronics</topic><topic>PHOTODETECTORS</topic><topic>Photonic crystals</topic><topic>QUANTUM EFFICIENCY</topic><topic>Two dimensional materials</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenyi</creatorcontrib><creatorcontrib>Klots, Andrey</creatorcontrib><creatorcontrib>Yang, Yuanmu</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Kravchenko, Ivan I.</creatorcontrib><creatorcontrib>Briggs, Dayrl P.</creatorcontrib><creatorcontrib>Bolotin, Kirill I.</creatorcontrib><creatorcontrib>Valentine, Jason</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenyi</au><au>Klots, Andrey</au><au>Yang, Yuanmu</au><au>Li, Wei</au><au>Kravchenko, Ivan I.</au><au>Briggs, Dayrl P.</au><au>Bolotin, Kirill I.</au><au>Valentine, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals</atitle><jtitle>Applied physics letters</jtitle><date>2015-05-04</date><risdate>2015</risdate><volume>106</volume><issue>18</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4919760</doi><orcidid>https://orcid.org/0000-0002-2227-9431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-05, Vol.106 (18)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22398987
source AIP Journals Complete; Alma/SFX Local Collection
subjects ABSORPTION
Applied physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTALS
ELECTRICAL PROPERTIES
ELECTRODES
FIELD EFFECT TRANSISTORS
GRAPHENE
INTERFACES
LIGHT TRANSMISSION
Molybdenum disulfide
MOLYBDENUM SULFIDES
Monolayers
Near infrared radiation
OPTICAL PROPERTIES
Optoelectronics
PHOTODETECTORS
Photonic crystals
QUANTUM EFFICIENCY
Two dimensional materials
TWO-DIMENSIONAL CALCULATIONS
TWO-DIMENSIONAL SYSTEMS
VISIBLE RADIATION
title Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20absorption%20in%20two-dimensional%20materials%20via%20Fano-resonant%20photonic%20crystals&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Wenyi&rft.date=2015-05-04&rft.volume=106&rft.issue=18&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4919760&rft_dat=%3Cproquest_osti_%3E2124835072%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124835072&rft_id=info:pmid/&rfr_iscdi=true