Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals
The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-05, Vol.106 (18) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 106 |
creator | Wang, Wenyi Klots, Andrey Yang, Yuanmu Li, Wei Kravchenko, Ivan I. Briggs, Dayrl P. Bolotin, Kirill I. Valentine, Jason |
description | The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface. |
doi_str_mv | 10.1063/1.4919760 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22398987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124835072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-c1b10ffc5a3e5a30643d49002a00cc0a1636714901fb4cf5637d71fc50b2f413</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWKsH_0HAk4etM8lusnuU0qpQ8NJ7yGazNKVNapIq_fdGWvAwPObNx8B7hDwizBAEf8FZ3WEnBVyRCYKUFUdsr8kEAHglugZvyV1K27I2jPMJWS_8RntjB6r7FOIhu-Cp8zT_hGpwe-tTMfSO7nW20eldot9O06X2oYo2lZPP9LAJOXhnqImnlAtzT27GIvbholOyXi7W8_dq9fn2MX9dVYa3IlcGe4RxNI3mtgyImg91B8A0gDGgUXAhsTg49rUZG8HlILHw0LOxRj4lT-e3IWWnknHZmo0J3luTFWO8a7tW_lOHGL6ONmW1DcdYMiXFkNUtb0CyQj2fKRNDStGO6hDdXseTQlB_zSpUl2b5L6Fpagk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124835072</pqid></control><display><type>article</type><title>Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Wenyi ; Klots, Andrey ; Yang, Yuanmu ; Li, Wei ; Kravchenko, Ivan I. ; Briggs, Dayrl P. ; Bolotin, Kirill I. ; Valentine, Jason</creator><creatorcontrib>Wang, Wenyi ; Klots, Andrey ; Yang, Yuanmu ; Li, Wei ; Kravchenko, Ivan I. ; Briggs, Dayrl P. ; Bolotin, Kirill I. ; Valentine, Jason</creatorcontrib><description>The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4919760</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ABSORPTION ; Applied physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTALS ; ELECTRICAL PROPERTIES ; ELECTRODES ; FIELD EFFECT TRANSISTORS ; GRAPHENE ; INTERFACES ; LIGHT TRANSMISSION ; Molybdenum disulfide ; MOLYBDENUM SULFIDES ; Monolayers ; Near infrared radiation ; OPTICAL PROPERTIES ; Optoelectronics ; PHOTODETECTORS ; Photonic crystals ; QUANTUM EFFICIENCY ; Two dimensional materials ; TWO-DIMENSIONAL CALCULATIONS ; TWO-DIMENSIONAL SYSTEMS ; VISIBLE RADIATION</subject><ispartof>Applied physics letters, 2015-05, Vol.106 (18)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-c1b10ffc5a3e5a30643d49002a00cc0a1636714901fb4cf5637d71fc50b2f413</citedby><cites>FETCH-LOGICAL-c386t-c1b10ffc5a3e5a30643d49002a00cc0a1636714901fb4cf5637d71fc50b2f413</cites><orcidid>0000-0002-2227-9431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22398987$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wenyi</creatorcontrib><creatorcontrib>Klots, Andrey</creatorcontrib><creatorcontrib>Yang, Yuanmu</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Kravchenko, Ivan I.</creatorcontrib><creatorcontrib>Briggs, Dayrl P.</creatorcontrib><creatorcontrib>Bolotin, Kirill I.</creatorcontrib><creatorcontrib>Valentine, Jason</creatorcontrib><title>Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals</title><title>Applied physics letters</title><description>The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.</description><subject>ABSORPTION</subject><subject>Applied physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTALS</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTRODES</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>GRAPHENE</subject><subject>INTERFACES</subject><subject>LIGHT TRANSMISSION</subject><subject>Molybdenum disulfide</subject><subject>MOLYBDENUM SULFIDES</subject><subject>Monolayers</subject><subject>Near infrared radiation</subject><subject>OPTICAL PROPERTIES</subject><subject>Optoelectronics</subject><subject>PHOTODETECTORS</subject><subject>Photonic crystals</subject><subject>QUANTUM EFFICIENCY</subject><subject>Two dimensional materials</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><subject>VISIBLE RADIATION</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWKsH_0HAk4etM8lusnuU0qpQ8NJ7yGazNKVNapIq_fdGWvAwPObNx8B7hDwizBAEf8FZ3WEnBVyRCYKUFUdsr8kEAHglugZvyV1K27I2jPMJWS_8RntjB6r7FOIhu-Cp8zT_hGpwe-tTMfSO7nW20eldot9O06X2oYo2lZPP9LAJOXhnqImnlAtzT27GIvbholOyXi7W8_dq9fn2MX9dVYa3IlcGe4RxNI3mtgyImg91B8A0gDGgUXAhsTg49rUZG8HlILHw0LOxRj4lT-e3IWWnknHZmo0J3luTFWO8a7tW_lOHGL6ONmW1DcdYMiXFkNUtb0CyQj2fKRNDStGO6hDdXseTQlB_zSpUl2b5L6Fpagk</recordid><startdate>20150504</startdate><enddate>20150504</enddate><creator>Wang, Wenyi</creator><creator>Klots, Andrey</creator><creator>Yang, Yuanmu</creator><creator>Li, Wei</creator><creator>Kravchenko, Ivan I.</creator><creator>Briggs, Dayrl P.</creator><creator>Bolotin, Kirill I.</creator><creator>Valentine, Jason</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2227-9431</orcidid></search><sort><creationdate>20150504</creationdate><title>Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals</title><author>Wang, Wenyi ; Klots, Andrey ; Yang, Yuanmu ; Li, Wei ; Kravchenko, Ivan I. ; Briggs, Dayrl P. ; Bolotin, Kirill I. ; Valentine, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-c1b10ffc5a3e5a30643d49002a00cc0a1636714901fb4cf5637d71fc50b2f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ABSORPTION</topic><topic>Applied physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTALS</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTRODES</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>GRAPHENE</topic><topic>INTERFACES</topic><topic>LIGHT TRANSMISSION</topic><topic>Molybdenum disulfide</topic><topic>MOLYBDENUM SULFIDES</topic><topic>Monolayers</topic><topic>Near infrared radiation</topic><topic>OPTICAL PROPERTIES</topic><topic>Optoelectronics</topic><topic>PHOTODETECTORS</topic><topic>Photonic crystals</topic><topic>QUANTUM EFFICIENCY</topic><topic>Two dimensional materials</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenyi</creatorcontrib><creatorcontrib>Klots, Andrey</creatorcontrib><creatorcontrib>Yang, Yuanmu</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Kravchenko, Ivan I.</creatorcontrib><creatorcontrib>Briggs, Dayrl P.</creatorcontrib><creatorcontrib>Bolotin, Kirill I.</creatorcontrib><creatorcontrib>Valentine, Jason</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenyi</au><au>Klots, Andrey</au><au>Yang, Yuanmu</au><au>Li, Wei</au><au>Kravchenko, Ivan I.</au><au>Briggs, Dayrl P.</au><au>Bolotin, Kirill I.</au><au>Valentine, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals</atitle><jtitle>Applied physics letters</jtitle><date>2015-05-04</date><risdate>2015</risdate><volume>106</volume><issue>18</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4919760</doi><orcidid>https://orcid.org/0000-0002-2227-9431</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-05, Vol.106 (18) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22398987 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | ABSORPTION Applied physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CRYSTALS ELECTRICAL PROPERTIES ELECTRODES FIELD EFFECT TRANSISTORS GRAPHENE INTERFACES LIGHT TRANSMISSION Molybdenum disulfide MOLYBDENUM SULFIDES Monolayers Near infrared radiation OPTICAL PROPERTIES Optoelectronics PHOTODETECTORS Photonic crystals QUANTUM EFFICIENCY Two dimensional materials TWO-DIMENSIONAL CALCULATIONS TWO-DIMENSIONAL SYSTEMS VISIBLE RADIATION |
title | Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20absorption%20in%20two-dimensional%20materials%20via%20Fano-resonant%20photonic%20crystals&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Wenyi&rft.date=2015-05-04&rft.volume=106&rft.issue=18&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4919760&rft_dat=%3Cproquest_osti_%3E2124835072%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124835072&rft_id=info:pmid/&rfr_iscdi=true |