Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation
In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-01, Vol.106 (1) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 106 |
creator | Dumpala, Santoshrupa Broderick, Scott R. Khalilov, Umedjon Neyts, Erik C. van Duin, Adri C. T. Provine, J Howe, Roger T. Rajan, Krishna |
description | In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature. |
doi_str_mv | 10.1063/1.4905442 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22395636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-4ad44bb754d116c172abaad09ef2e6fcf021e9d4db5ea64c84b03f155ed63e0b3</originalsourceid><addsrcrecordid>eNpFUE1LAzEUDKJgrR78BwFPHlbzvd2jFD8KBS96DtnkbZuyu2mTVOy_N9qClzfMY95jZhC6peSBEsUf6YNoiBSCnaEJJXVdcUpn52hCCOGVaiS9RFcpbQqVjPMJ2i3GDKtoMjhschh8yt5iu4bBW9NjP5iVH1fYjA5HMDb7L8BdiLZMD73DQ-jB7nsTsTuMphzh5IfCsw9jwmEstPe2YPj27m97jS460ye4OeEUfb48f8zfquX762L-tKwsn6lcCeOEaNtaCkepsrRmpjXGkQY6BqqzHWEUGidcK8EoYWeiJbyjUoJTHEjLp-ju-DeUSDpZn8Gui5MRbNaM8UYqrv5V2xh2e0hZb8I-jsWYZpSJRtRc8KK6P6psDClF6PQ2lmriQVOif3vXVJ965z_r_Xa6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124947343</pqid></control><display><type>article</type><title>Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dumpala, Santoshrupa ; Broderick, Scott R. ; Khalilov, Umedjon ; Neyts, Erik C. ; van Duin, Adri C. T. ; Provine, J ; Howe, Roger T. ; Rajan, Krishna</creator><creatorcontrib>Dumpala, Santoshrupa ; Broderick, Scott R. ; Khalilov, Umedjon ; Neyts, Erik C. ; van Duin, Adri C. T. ; Provine, J ; Howe, Roger T. ; Rajan, Krishna</creatorcontrib><description>In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4905442</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; ATOMS ; COMPARATIVE EVALUATIONS ; CONCENTRATION RATIO ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; High temperature ; INTERFACES ; LAYERS ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; Organic chemistry ; OXIDATION ; OXYGEN ; PROBES ; RESOLUTION ; SILICON ; Silicon dioxide ; SILICON OXIDES ; Simulation ; TEMPERATURE DEPENDENCE ; Temperature effects ; TOMOGRAPHY</subject><ispartof>Applied physics letters, 2015-01, Vol.106 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-4ad44bb754d116c172abaad09ef2e6fcf021e9d4db5ea64c84b03f155ed63e0b3</citedby><cites>FETCH-LOGICAL-c386t-4ad44bb754d116c172abaad09ef2e6fcf021e9d4db5ea64c84b03f155ed63e0b3</cites><orcidid>0000-0003-3841-1895 ; 0000-0001-9283-4165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22395636$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumpala, Santoshrupa</creatorcontrib><creatorcontrib>Broderick, Scott R.</creatorcontrib><creatorcontrib>Khalilov, Umedjon</creatorcontrib><creatorcontrib>Neyts, Erik C.</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Provine, J</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Rajan, Krishna</creatorcontrib><title>Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation</title><title>Applied physics letters</title><description>In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.</description><subject>Applied physics</subject><subject>ATOMS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>CONCENTRATION RATIO</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>High temperature</subject><subject>INTERFACES</subject><subject>LAYERS</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Organic chemistry</subject><subject>OXIDATION</subject><subject>OXYGEN</subject><subject>PROBES</subject><subject>RESOLUTION</subject><subject>SILICON</subject><subject>Silicon dioxide</subject><subject>SILICON OXIDES</subject><subject>Simulation</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>Temperature effects</subject><subject>TOMOGRAPHY</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFUE1LAzEUDKJgrR78BwFPHlbzvd2jFD8KBS96DtnkbZuyu2mTVOy_N9qClzfMY95jZhC6peSBEsUf6YNoiBSCnaEJJXVdcUpn52hCCOGVaiS9RFcpbQqVjPMJ2i3GDKtoMjhschh8yt5iu4bBW9NjP5iVH1fYjA5HMDb7L8BdiLZMD73DQ-jB7nsTsTuMphzh5IfCsw9jwmEstPe2YPj27m97jS460ye4OeEUfb48f8zfquX762L-tKwsn6lcCeOEaNtaCkepsrRmpjXGkQY6BqqzHWEUGidcK8EoYWeiJbyjUoJTHEjLp-ju-DeUSDpZn8Gui5MRbNaM8UYqrv5V2xh2e0hZb8I-jsWYZpSJRtRc8KK6P6psDClF6PQ2lmriQVOif3vXVJ965z_r_Xa6</recordid><startdate>20150105</startdate><enddate>20150105</enddate><creator>Dumpala, Santoshrupa</creator><creator>Broderick, Scott R.</creator><creator>Khalilov, Umedjon</creator><creator>Neyts, Erik C.</creator><creator>van Duin, Adri C. T.</creator><creator>Provine, J</creator><creator>Howe, Roger T.</creator><creator>Rajan, Krishna</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3841-1895</orcidid><orcidid>https://orcid.org/0000-0001-9283-4165</orcidid></search><sort><creationdate>20150105</creationdate><title>Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation</title><author>Dumpala, Santoshrupa ; Broderick, Scott R. ; Khalilov, Umedjon ; Neyts, Erik C. ; van Duin, Adri C. T. ; Provine, J ; Howe, Roger T. ; Rajan, Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-4ad44bb754d116c172abaad09ef2e6fcf021e9d4db5ea64c84b03f155ed63e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>ATOMS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>CONCENTRATION RATIO</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>High temperature</topic><topic>INTERFACES</topic><topic>LAYERS</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Organic chemistry</topic><topic>OXIDATION</topic><topic>OXYGEN</topic><topic>PROBES</topic><topic>RESOLUTION</topic><topic>SILICON</topic><topic>Silicon dioxide</topic><topic>SILICON OXIDES</topic><topic>Simulation</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>Temperature effects</topic><topic>TOMOGRAPHY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumpala, Santoshrupa</creatorcontrib><creatorcontrib>Broderick, Scott R.</creatorcontrib><creatorcontrib>Khalilov, Umedjon</creatorcontrib><creatorcontrib>Neyts, Erik C.</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Provine, J</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Rajan, Krishna</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumpala, Santoshrupa</au><au>Broderick, Scott R.</au><au>Khalilov, Umedjon</au><au>Neyts, Erik C.</au><au>van Duin, Adri C. T.</au><au>Provine, J</au><au>Howe, Roger T.</au><au>Rajan, Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation</atitle><jtitle>Applied physics letters</jtitle><date>2015-01-05</date><risdate>2015</risdate><volume>106</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4905442</doi><orcidid>https://orcid.org/0000-0003-3841-1895</orcidid><orcidid>https://orcid.org/0000-0001-9283-4165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2015-01, Vol.106 (1) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22395636 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics ATOMS COMPARATIVE EVALUATIONS CONCENTRATION RATIO CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY High temperature INTERFACES LAYERS Molecular dynamics MOLECULAR DYNAMICS METHOD Organic chemistry OXIDATION OXYGEN PROBES RESOLUTION SILICON Silicon dioxide SILICON OXIDES Simulation TEMPERATURE DEPENDENCE Temperature effects TOMOGRAPHY |
title | Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20atomistic%20chemical%20imaging%20and%20reactive%20force%20field%20molecular%20dynamic%20simulations%20on%20silicon%20oxidation&rft.jtitle=Applied%20physics%20letters&rft.au=Dumpala,%20Santoshrupa&rft.date=2015-01-05&rft.volume=106&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4905442&rft_dat=%3Cproquest_osti_%3E2124947343%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124947343&rft_id=info:pmid/&rfr_iscdi=true |