Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation

In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-01, Vol.106 (1)
Hauptverfasser: Dumpala, Santoshrupa, Broderick, Scott R., Khalilov, Umedjon, Neyts, Erik C., van Duin, Adri C. T., Provine, J, Howe, Roger T., Rajan, Krishna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Applied physics letters
container_volume 106
creator Dumpala, Santoshrupa
Broderick, Scott R.
Khalilov, Umedjon
Neyts, Erik C.
van Duin, Adri C. T.
Provine, J
Howe, Roger T.
Rajan, Krishna
description In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.
doi_str_mv 10.1063/1.4905442
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22395636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124947343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-4ad44bb754d116c172abaad09ef2e6fcf021e9d4db5ea64c84b03f155ed63e0b3</originalsourceid><addsrcrecordid>eNpFUE1LAzEUDKJgrR78BwFPHlbzvd2jFD8KBS96DtnkbZuyu2mTVOy_N9qClzfMY95jZhC6peSBEsUf6YNoiBSCnaEJJXVdcUpn52hCCOGVaiS9RFcpbQqVjPMJ2i3GDKtoMjhschh8yt5iu4bBW9NjP5iVH1fYjA5HMDb7L8BdiLZMD73DQ-jB7nsTsTuMphzh5IfCsw9jwmEstPe2YPj27m97jS460ye4OeEUfb48f8zfquX762L-tKwsn6lcCeOEaNtaCkepsrRmpjXGkQY6BqqzHWEUGidcK8EoYWeiJbyjUoJTHEjLp-ju-DeUSDpZn8Gui5MRbNaM8UYqrv5V2xh2e0hZb8I-jsWYZpSJRtRc8KK6P6psDClF6PQ2lmriQVOif3vXVJ965z_r_Xa6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124947343</pqid></control><display><type>article</type><title>Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dumpala, Santoshrupa ; Broderick, Scott R. ; Khalilov, Umedjon ; Neyts, Erik C. ; van Duin, Adri C. T. ; Provine, J ; Howe, Roger T. ; Rajan, Krishna</creator><creatorcontrib>Dumpala, Santoshrupa ; Broderick, Scott R. ; Khalilov, Umedjon ; Neyts, Erik C. ; van Duin, Adri C. T. ; Provine, J ; Howe, Roger T. ; Rajan, Krishna</creatorcontrib><description>In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4905442</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; ATOMS ; COMPARATIVE EVALUATIONS ; CONCENTRATION RATIO ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; High temperature ; INTERFACES ; LAYERS ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; Organic chemistry ; OXIDATION ; OXYGEN ; PROBES ; RESOLUTION ; SILICON ; Silicon dioxide ; SILICON OXIDES ; Simulation ; TEMPERATURE DEPENDENCE ; Temperature effects ; TOMOGRAPHY</subject><ispartof>Applied physics letters, 2015-01, Vol.106 (1)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-4ad44bb754d116c172abaad09ef2e6fcf021e9d4db5ea64c84b03f155ed63e0b3</citedby><cites>FETCH-LOGICAL-c386t-4ad44bb754d116c172abaad09ef2e6fcf021e9d4db5ea64c84b03f155ed63e0b3</cites><orcidid>0000-0003-3841-1895 ; 0000-0001-9283-4165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22395636$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumpala, Santoshrupa</creatorcontrib><creatorcontrib>Broderick, Scott R.</creatorcontrib><creatorcontrib>Khalilov, Umedjon</creatorcontrib><creatorcontrib>Neyts, Erik C.</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Provine, J</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Rajan, Krishna</creatorcontrib><title>Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation</title><title>Applied physics letters</title><description>In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.</description><subject>Applied physics</subject><subject>ATOMS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>CONCENTRATION RATIO</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>High temperature</subject><subject>INTERFACES</subject><subject>LAYERS</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Organic chemistry</subject><subject>OXIDATION</subject><subject>OXYGEN</subject><subject>PROBES</subject><subject>RESOLUTION</subject><subject>SILICON</subject><subject>Silicon dioxide</subject><subject>SILICON OXIDES</subject><subject>Simulation</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>Temperature effects</subject><subject>TOMOGRAPHY</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFUE1LAzEUDKJgrR78BwFPHlbzvd2jFD8KBS96DtnkbZuyu2mTVOy_N9qClzfMY95jZhC6peSBEsUf6YNoiBSCnaEJJXVdcUpn52hCCOGVaiS9RFcpbQqVjPMJ2i3GDKtoMjhschh8yt5iu4bBW9NjP5iVH1fYjA5HMDb7L8BdiLZMD73DQ-jB7nsTsTuMphzh5IfCsw9jwmEstPe2YPj27m97jS460ye4OeEUfb48f8zfquX762L-tKwsn6lcCeOEaNtaCkepsrRmpjXGkQY6BqqzHWEUGidcK8EoYWeiJbyjUoJTHEjLp-ju-DeUSDpZn8Gui5MRbNaM8UYqrv5V2xh2e0hZb8I-jsWYZpSJRtRc8KK6P6psDClF6PQ2lmriQVOif3vXVJ965z_r_Xa6</recordid><startdate>20150105</startdate><enddate>20150105</enddate><creator>Dumpala, Santoshrupa</creator><creator>Broderick, Scott R.</creator><creator>Khalilov, Umedjon</creator><creator>Neyts, Erik C.</creator><creator>van Duin, Adri C. T.</creator><creator>Provine, J</creator><creator>Howe, Roger T.</creator><creator>Rajan, Krishna</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3841-1895</orcidid><orcidid>https://orcid.org/0000-0001-9283-4165</orcidid></search><sort><creationdate>20150105</creationdate><title>Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation</title><author>Dumpala, Santoshrupa ; Broderick, Scott R. ; Khalilov, Umedjon ; Neyts, Erik C. ; van Duin, Adri C. T. ; Provine, J ; Howe, Roger T. ; Rajan, Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-4ad44bb754d116c172abaad09ef2e6fcf021e9d4db5ea64c84b03f155ed63e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>ATOMS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>CONCENTRATION RATIO</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>High temperature</topic><topic>INTERFACES</topic><topic>LAYERS</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Organic chemistry</topic><topic>OXIDATION</topic><topic>OXYGEN</topic><topic>PROBES</topic><topic>RESOLUTION</topic><topic>SILICON</topic><topic>Silicon dioxide</topic><topic>SILICON OXIDES</topic><topic>Simulation</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>Temperature effects</topic><topic>TOMOGRAPHY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumpala, Santoshrupa</creatorcontrib><creatorcontrib>Broderick, Scott R.</creatorcontrib><creatorcontrib>Khalilov, Umedjon</creatorcontrib><creatorcontrib>Neyts, Erik C.</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Provine, J</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Rajan, Krishna</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumpala, Santoshrupa</au><au>Broderick, Scott R.</au><au>Khalilov, Umedjon</au><au>Neyts, Erik C.</au><au>van Duin, Adri C. T.</au><au>Provine, J</au><au>Howe, Roger T.</au><au>Rajan, Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation</atitle><jtitle>Applied physics letters</jtitle><date>2015-01-05</date><risdate>2015</risdate><volume>106</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4905442</doi><orcidid>https://orcid.org/0000-0003-3841-1895</orcidid><orcidid>https://orcid.org/0000-0001-9283-4165</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-01, Vol.106 (1)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22395636
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
ATOMS
COMPARATIVE EVALUATIONS
CONCENTRATION RATIO
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
High temperature
INTERFACES
LAYERS
Molecular dynamics
MOLECULAR DYNAMICS METHOD
Organic chemistry
OXIDATION
OXYGEN
PROBES
RESOLUTION
SILICON
Silicon dioxide
SILICON OXIDES
Simulation
TEMPERATURE DEPENDENCE
Temperature effects
TOMOGRAPHY
title Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20atomistic%20chemical%20imaging%20and%20reactive%20force%20field%20molecular%20dynamic%20simulations%20on%20silicon%20oxidation&rft.jtitle=Applied%20physics%20letters&rft.au=Dumpala,%20Santoshrupa&rft.date=2015-01-05&rft.volume=106&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4905442&rft_dat=%3Cproquest_osti_%3E2124947343%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124947343&rft_id=info:pmid/&rfr_iscdi=true