A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers
We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined co...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2015-04, Vol.86 (4), p.043702-043702 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 043702 |
---|---|
container_issue | 4 |
container_start_page | 043702 |
container_title | Review of scientific instruments |
container_volume | 86 |
creator | Tötzke, C Manke, I Gaiselmann, G Bohner, J Müller, B R Kupsch, A Hentschel, M P Schmidt, V Banhart, J Lehnert, W |
description | We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell. |
doi_str_mv | 10.1063/1.4918291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22392458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677883202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-240f9a196d64fbb0cafb362fc55afad791acf5d3a65ca16f0675e71df4166ce03</originalsourceid><addsrcrecordid>eNpFkctKxDAUhoMoznhZ-AJScKOLak7SpO1yGLzBgBsFdyGTy0ykbcakFfr2Rmccswn8-fJxDj9CF4BvAXN6B7dFDRWp4QBNAVd1XnJCD9EUY1rkvCyqCTqJ8QOnwwCO0YSwmtKK0ymys0wb7ZTsjc6UbzfBxOh8l9Ivp0xmfcjWbrXOUu6bof95es-DHLPet34V5GY9Zt7uvybLSsZMO2uHX08jRxPiGTqysonmfHeforeH-9f5U754eXyezxa5oiXvc1JgW0uoueaFXS6xknZJObGKMWmlLmuQyjJNJWdKAreYl8yUoG0BnCuD6Sm62np97J2IyvVGrZXvOqN6QQitScGqRF1vqU3wn4OJvWhdVKZpZGf8EAXwsqwqSjD5F-7RDz-ELu0gCJCiImlklqibLaWCjzEYKzbBtTKMArD4qUiA2FWU2MudcVi2Ru_Jv07oN3Y6i1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124822405</pqid></control><display><type>article</type><title>A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Tötzke, C ; Manke, I ; Gaiselmann, G ; Bohner, J ; Müller, B R ; Kupsch, A ; Hentschel, M P ; Schmidt, V ; Banhart, J ; Lehnert, W</creator><creatorcontrib>Tötzke, C ; Manke, I ; Gaiselmann, G ; Bohner, J ; Müller, B R ; Kupsch, A ; Hentschel, M P ; Schmidt, V ; Banhart, J ; Lehnert, W</creatorcontrib><description>We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4918291</identifier><identifier>PMID: 25933863</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Compressed gas ; COMPRESSION ; Data compression ; DIFFUSION ; Diffusion layers ; FIBERS ; Gas transport ; Gaseous diffusion ; GEOMETRY ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; LAYERS ; Pore size ; POROSITY ; Scientific apparatus & instruments ; SYNCHROTRONS ; TOMOGRAPHY ; Tortuosity ; Water ; X RADIATION</subject><ispartof>Review of scientific instruments, 2015-04, Vol.86 (4), p.043702-043702</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-240f9a196d64fbb0cafb362fc55afad791acf5d3a65ca16f0675e71df4166ce03</citedby><cites>FETCH-LOGICAL-c376t-240f9a196d64fbb0cafb362fc55afad791acf5d3a65ca16f0675e71df4166ce03</cites><orcidid>0000-0003-2234-1538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25933863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22392458$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tötzke, C</creatorcontrib><creatorcontrib>Manke, I</creatorcontrib><creatorcontrib>Gaiselmann, G</creatorcontrib><creatorcontrib>Bohner, J</creatorcontrib><creatorcontrib>Müller, B R</creatorcontrib><creatorcontrib>Kupsch, A</creatorcontrib><creatorcontrib>Hentschel, M P</creatorcontrib><creatorcontrib>Schmidt, V</creatorcontrib><creatorcontrib>Banhart, J</creatorcontrib><creatorcontrib>Lehnert, W</creatorcontrib><title>A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.</description><subject>Compressed gas</subject><subject>COMPRESSION</subject><subject>Data compression</subject><subject>DIFFUSION</subject><subject>Diffusion layers</subject><subject>FIBERS</subject><subject>Gas transport</subject><subject>Gaseous diffusion</subject><subject>GEOMETRY</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>LAYERS</subject><subject>Pore size</subject><subject>POROSITY</subject><subject>Scientific apparatus & instruments</subject><subject>SYNCHROTRONS</subject><subject>TOMOGRAPHY</subject><subject>Tortuosity</subject><subject>Water</subject><subject>X RADIATION</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkctKxDAUhoMoznhZ-AJScKOLak7SpO1yGLzBgBsFdyGTy0ykbcakFfr2Rmccswn8-fJxDj9CF4BvAXN6B7dFDRWp4QBNAVd1XnJCD9EUY1rkvCyqCTqJ8QOnwwCO0YSwmtKK0ymys0wb7ZTsjc6UbzfBxOh8l9Ivp0xmfcjWbrXOUu6bof95es-DHLPet34V5GY9Zt7uvybLSsZMO2uHX08jRxPiGTqysonmfHeforeH-9f5U754eXyezxa5oiXvc1JgW0uoueaFXS6xknZJObGKMWmlLmuQyjJNJWdKAreYl8yUoG0BnCuD6Sm62np97J2IyvVGrZXvOqN6QQitScGqRF1vqU3wn4OJvWhdVKZpZGf8EAXwsqwqSjD5F-7RDz-ELu0gCJCiImlklqibLaWCjzEYKzbBtTKMArD4qUiA2FWU2MudcVi2Ru_Jv07oN3Y6i1c</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Tötzke, C</creator><creator>Manke, I</creator><creator>Gaiselmann, G</creator><creator>Bohner, J</creator><creator>Müller, B R</creator><creator>Kupsch, A</creator><creator>Hentschel, M P</creator><creator>Schmidt, V</creator><creator>Banhart, J</creator><creator>Lehnert, W</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2234-1538</orcidid></search><sort><creationdate>20150401</creationdate><title>A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers</title><author>Tötzke, C ; Manke, I ; Gaiselmann, G ; Bohner, J ; Müller, B R ; Kupsch, A ; Hentschel, M P ; Schmidt, V ; Banhart, J ; Lehnert, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-240f9a196d64fbb0cafb362fc55afad791acf5d3a65ca16f0675e71df4166ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Compressed gas</topic><topic>COMPRESSION</topic><topic>Data compression</topic><topic>DIFFUSION</topic><topic>Diffusion layers</topic><topic>FIBERS</topic><topic>Gas transport</topic><topic>Gaseous diffusion</topic><topic>GEOMETRY</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>LAYERS</topic><topic>Pore size</topic><topic>POROSITY</topic><topic>Scientific apparatus & instruments</topic><topic>SYNCHROTRONS</topic><topic>TOMOGRAPHY</topic><topic>Tortuosity</topic><topic>Water</topic><topic>X RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tötzke, C</creatorcontrib><creatorcontrib>Manke, I</creatorcontrib><creatorcontrib>Gaiselmann, G</creatorcontrib><creatorcontrib>Bohner, J</creatorcontrib><creatorcontrib>Müller, B R</creatorcontrib><creatorcontrib>Kupsch, A</creatorcontrib><creatorcontrib>Hentschel, M P</creatorcontrib><creatorcontrib>Schmidt, V</creatorcontrib><creatorcontrib>Banhart, J</creatorcontrib><creatorcontrib>Lehnert, W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tötzke, C</au><au>Manke, I</au><au>Gaiselmann, G</au><au>Bohner, J</au><au>Müller, B R</au><au>Kupsch, A</au><au>Hentschel, M P</au><au>Schmidt, V</au><au>Banhart, J</au><au>Lehnert, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>86</volume><issue>4</issue><spage>043702</spage><epage>043702</epage><pages>043702-043702</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25933863</pmid><doi>10.1063/1.4918291</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2234-1538</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2015-04, Vol.86 (4), p.043702-043702 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_22392458 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Compressed gas COMPRESSION Data compression DIFFUSION Diffusion layers FIBERS Gas transport Gaseous diffusion GEOMETRY INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY LAYERS Pore size POROSITY Scientific apparatus & instruments SYNCHROTRONS TOMOGRAPHY Tortuosity Water X RADIATION |
title | A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dedicated%20compression%20device%20for%20high%20resolution%20X-ray%20tomography%20of%20compressed%20gas%20diffusion%20layers&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=T%C3%B6tzke,%20C&rft.date=2015-04-01&rft.volume=86&rft.issue=4&rft.spage=043702&rft.epage=043702&rft.pages=043702-043702&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/10.1063/1.4918291&rft_dat=%3Cproquest_osti_%3E1677883202%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124822405&rft_id=info:pmid/25933863&rfr_iscdi=true |