A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers

We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2015-04, Vol.86 (4), p.043702-043702
Hauptverfasser: Tötzke, C, Manke, I, Gaiselmann, G, Bohner, J, Müller, B R, Kupsch, A, Hentschel, M P, Schmidt, V, Banhart, J, Lehnert, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043702
container_issue 4
container_start_page 043702
container_title Review of scientific instruments
container_volume 86
creator Tötzke, C
Manke, I
Gaiselmann, G
Bohner, J
Müller, B R
Kupsch, A
Hentschel, M P
Schmidt, V
Banhart, J
Lehnert, W
description We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.
doi_str_mv 10.1063/1.4918291
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22392458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677883202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-240f9a196d64fbb0cafb362fc55afad791acf5d3a65ca16f0675e71df4166ce03</originalsourceid><addsrcrecordid>eNpFkctKxDAUhoMoznhZ-AJScKOLak7SpO1yGLzBgBsFdyGTy0ykbcakFfr2Rmccswn8-fJxDj9CF4BvAXN6B7dFDRWp4QBNAVd1XnJCD9EUY1rkvCyqCTqJ8QOnwwCO0YSwmtKK0ymys0wb7ZTsjc6UbzfBxOh8l9Ivp0xmfcjWbrXOUu6bof95es-DHLPet34V5GY9Zt7uvybLSsZMO2uHX08jRxPiGTqysonmfHeforeH-9f5U754eXyezxa5oiXvc1JgW0uoueaFXS6xknZJObGKMWmlLmuQyjJNJWdKAreYl8yUoG0BnCuD6Sm62np97J2IyvVGrZXvOqN6QQitScGqRF1vqU3wn4OJvWhdVKZpZGf8EAXwsqwqSjD5F-7RDz-ELu0gCJCiImlklqibLaWCjzEYKzbBtTKMArD4qUiA2FWU2MudcVi2Ru_Jv07oN3Y6i1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124822405</pqid></control><display><type>article</type><title>A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Tötzke, C ; Manke, I ; Gaiselmann, G ; Bohner, J ; Müller, B R ; Kupsch, A ; Hentschel, M P ; Schmidt, V ; Banhart, J ; Lehnert, W</creator><creatorcontrib>Tötzke, C ; Manke, I ; Gaiselmann, G ; Bohner, J ; Müller, B R ; Kupsch, A ; Hentschel, M P ; Schmidt, V ; Banhart, J ; Lehnert, W</creatorcontrib><description>We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4918291</identifier><identifier>PMID: 25933863</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Compressed gas ; COMPRESSION ; Data compression ; DIFFUSION ; Diffusion layers ; FIBERS ; Gas transport ; Gaseous diffusion ; GEOMETRY ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; LAYERS ; Pore size ; POROSITY ; Scientific apparatus &amp; instruments ; SYNCHROTRONS ; TOMOGRAPHY ; Tortuosity ; Water ; X RADIATION</subject><ispartof>Review of scientific instruments, 2015-04, Vol.86 (4), p.043702-043702</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-240f9a196d64fbb0cafb362fc55afad791acf5d3a65ca16f0675e71df4166ce03</citedby><cites>FETCH-LOGICAL-c376t-240f9a196d64fbb0cafb362fc55afad791acf5d3a65ca16f0675e71df4166ce03</cites><orcidid>0000-0003-2234-1538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25933863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22392458$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tötzke, C</creatorcontrib><creatorcontrib>Manke, I</creatorcontrib><creatorcontrib>Gaiselmann, G</creatorcontrib><creatorcontrib>Bohner, J</creatorcontrib><creatorcontrib>Müller, B R</creatorcontrib><creatorcontrib>Kupsch, A</creatorcontrib><creatorcontrib>Hentschel, M P</creatorcontrib><creatorcontrib>Schmidt, V</creatorcontrib><creatorcontrib>Banhart, J</creatorcontrib><creatorcontrib>Lehnert, W</creatorcontrib><title>A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.</description><subject>Compressed gas</subject><subject>COMPRESSION</subject><subject>Data compression</subject><subject>DIFFUSION</subject><subject>Diffusion layers</subject><subject>FIBERS</subject><subject>Gas transport</subject><subject>Gaseous diffusion</subject><subject>GEOMETRY</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>LAYERS</subject><subject>Pore size</subject><subject>POROSITY</subject><subject>Scientific apparatus &amp; instruments</subject><subject>SYNCHROTRONS</subject><subject>TOMOGRAPHY</subject><subject>Tortuosity</subject><subject>Water</subject><subject>X RADIATION</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkctKxDAUhoMoznhZ-AJScKOLak7SpO1yGLzBgBsFdyGTy0ykbcakFfr2Rmccswn8-fJxDj9CF4BvAXN6B7dFDRWp4QBNAVd1XnJCD9EUY1rkvCyqCTqJ8QOnwwCO0YSwmtKK0ymys0wb7ZTsjc6UbzfBxOh8l9Ivp0xmfcjWbrXOUu6bof95es-DHLPet34V5GY9Zt7uvybLSsZMO2uHX08jRxPiGTqysonmfHeforeH-9f5U754eXyezxa5oiXvc1JgW0uoueaFXS6xknZJObGKMWmlLmuQyjJNJWdKAreYl8yUoG0BnCuD6Sm62np97J2IyvVGrZXvOqN6QQitScGqRF1vqU3wn4OJvWhdVKZpZGf8EAXwsqwqSjD5F-7RDz-ELu0gCJCiImlklqibLaWCjzEYKzbBtTKMArD4qUiA2FWU2MudcVi2Ru_Jv07oN3Y6i1c</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Tötzke, C</creator><creator>Manke, I</creator><creator>Gaiselmann, G</creator><creator>Bohner, J</creator><creator>Müller, B R</creator><creator>Kupsch, A</creator><creator>Hentschel, M P</creator><creator>Schmidt, V</creator><creator>Banhart, J</creator><creator>Lehnert, W</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2234-1538</orcidid></search><sort><creationdate>20150401</creationdate><title>A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers</title><author>Tötzke, C ; Manke, I ; Gaiselmann, G ; Bohner, J ; Müller, B R ; Kupsch, A ; Hentschel, M P ; Schmidt, V ; Banhart, J ; Lehnert, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-240f9a196d64fbb0cafb362fc55afad791acf5d3a65ca16f0675e71df4166ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Compressed gas</topic><topic>COMPRESSION</topic><topic>Data compression</topic><topic>DIFFUSION</topic><topic>Diffusion layers</topic><topic>FIBERS</topic><topic>Gas transport</topic><topic>Gaseous diffusion</topic><topic>GEOMETRY</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>LAYERS</topic><topic>Pore size</topic><topic>POROSITY</topic><topic>Scientific apparatus &amp; instruments</topic><topic>SYNCHROTRONS</topic><topic>TOMOGRAPHY</topic><topic>Tortuosity</topic><topic>Water</topic><topic>X RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tötzke, C</creatorcontrib><creatorcontrib>Manke, I</creatorcontrib><creatorcontrib>Gaiselmann, G</creatorcontrib><creatorcontrib>Bohner, J</creatorcontrib><creatorcontrib>Müller, B R</creatorcontrib><creatorcontrib>Kupsch, A</creatorcontrib><creatorcontrib>Hentschel, M P</creatorcontrib><creatorcontrib>Schmidt, V</creatorcontrib><creatorcontrib>Banhart, J</creatorcontrib><creatorcontrib>Lehnert, W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tötzke, C</au><au>Manke, I</au><au>Gaiselmann, G</au><au>Bohner, J</au><au>Müller, B R</au><au>Kupsch, A</au><au>Hentschel, M P</au><au>Schmidt, V</au><au>Banhart, J</au><au>Lehnert, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>86</volume><issue>4</issue><spage>043702</spage><epage>043702</epage><pages>043702-043702</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25933863</pmid><doi>10.1063/1.4918291</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2234-1538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2015-04, Vol.86 (4), p.043702-043702
issn 0034-6748
1089-7623
language eng
recordid cdi_osti_scitechconnect_22392458
source AIP Journals Complete; Alma/SFX Local Collection
subjects Compressed gas
COMPRESSION
Data compression
DIFFUSION
Diffusion layers
FIBERS
Gas transport
Gaseous diffusion
GEOMETRY
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
LAYERS
Pore size
POROSITY
Scientific apparatus & instruments
SYNCHROTRONS
TOMOGRAPHY
Tortuosity
Water
X RADIATION
title A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dedicated%20compression%20device%20for%20high%20resolution%20X-ray%20tomography%20of%20compressed%20gas%20diffusion%20layers&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=T%C3%B6tzke,%20C&rft.date=2015-04-01&rft.volume=86&rft.issue=4&rft.spage=043702&rft.epage=043702&rft.pages=043702-043702&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/10.1063/1.4918291&rft_dat=%3Cproquest_osti_%3E1677883202%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124822405&rft_id=info:pmid/25933863&rfr_iscdi=true