The ReactorAFM: non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2015-03, Vol.86 (3), p.033706-033706
Hauptverfasser: Roobol, S B, Cañas-Ventura, M E, Bergman, M, van Spronsen, M A, Onderwaater, W G, van der Tuijn, P C, Koehler, R, Ofitserov, A, van Baarle, G J C, Frenken, J W M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 033706
container_issue 3
container_start_page 033706
container_title Review of scientific instruments
container_volume 86
creator Roobol, S B
Cañas-Ventura, M E
Bergman, M
van Spronsen, M A
Onderwaater, W G
van der Tuijn, P C
Koehler, R
Ofitserov, A
van Baarle, G J C
Frenken, J W M
description An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.
doi_str_mv 10.1063/1.4916194
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22392415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124861416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-2feb68cce0e84a1ccac9bf82583cc4e41f7504cec8f7424ce4cbdd807b21920d3</originalsourceid><addsrcrecordid>eNpFkdFrFDEQxoMo9qw--A9IwBd92JrJ5nYT30pptVARpD6H7OxsL-U2OZPsQ_Gfb6531sCQ4ePHx8x8jL0HcQaia7_AmTLQgVEv2AqENk3fyfYlWwnRqqbrlT5hb3K-F_WtAV6zE7nWrZRtv2J_bzfEf5HDEtP51Y-vPMTQYAylKtyVOHvkU0xIvHYpZow74rWSKz7c8SWMlPjG322aXaKcl0TchfGgFJqfwL2IrrjtQ6lu1Xz0xceQ37JXk9tmenf8T9nvq8vbi-_Nzc9v1xfnNw2q3pRGTjR0GpEEaeUA0aEZJr3fAVGRgqlfC4WEeuqVrI3CYRy16AcJRoqxPWUfD74xF28z-kK4qWMEwmLrGYxUsK7UpwO1S_HPQrnY2Wek7dYFiku20HVGt0oY9d_wGb2PSwp1BytBKt2Bgq5Snw_U_m450WR3yc8uPVgQdp-bBXvMrbIfjo7LMNP4TP4Lqn0EaC-Thg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124861416</pqid></control><display><type>article</type><title>The ReactorAFM: non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><creator>Roobol, S B ; Cañas-Ventura, M E ; Bergman, M ; van Spronsen, M A ; Onderwaater, W G ; van der Tuijn, P C ; Koehler, R ; Ofitserov, A ; van Baarle, G J C ; Frenken, J W M</creator><creatorcontrib>Roobol, S B ; Cañas-Ventura, M E ; Bergman, M ; van Spronsen, M A ; Onderwaater, W G ; van der Tuijn, P C ; Koehler, R ; Ofitserov, A ; van Baarle, G J C ; Frenken, J W M</creatorcontrib><description>An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4916194</identifier><identifier>PMID: 25832237</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ATMOSPHERES ; Atomic force microscopes ; ATOMIC FORCE MICROSCOPY ; CARBON MONOXIDE ; Catalysis ; CATALYSTS ; Catalytic activity ; Contact pressure ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Mass spectrometry ; MASS SPECTROSCOPY ; Microscopes ; NANOPARTICLES ; Nuclear reactors ; OXIDATION ; PALLADIUM ; SAMPLE PREPARATION ; Scientific apparatus &amp; instruments ; TEMPERATURE RANGE 0400-1000 K ; Ultrahigh vacuum</subject><ispartof>Review of scientific instruments, 2015-03, Vol.86 (3), p.033706-033706</ispartof><rights>2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-2feb68cce0e84a1ccac9bf82583cc4e41f7504cec8f7424ce4cbdd807b21920d3</citedby><cites>FETCH-LOGICAL-c479t-2feb68cce0e84a1ccac9bf82583cc4e41f7504cec8f7424ce4cbdd807b21920d3</cites><orcidid>0000-0001-9307-9851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25832237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22392415$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Roobol, S B</creatorcontrib><creatorcontrib>Cañas-Ventura, M E</creatorcontrib><creatorcontrib>Bergman, M</creatorcontrib><creatorcontrib>van Spronsen, M A</creatorcontrib><creatorcontrib>Onderwaater, W G</creatorcontrib><creatorcontrib>van der Tuijn, P C</creatorcontrib><creatorcontrib>Koehler, R</creatorcontrib><creatorcontrib>Ofitserov, A</creatorcontrib><creatorcontrib>van Baarle, G J C</creatorcontrib><creatorcontrib>Frenken, J W M</creatorcontrib><title>The ReactorAFM: non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.</description><subject>ATMOSPHERES</subject><subject>Atomic force microscopes</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>CARBON MONOXIDE</subject><subject>Catalysis</subject><subject>CATALYSTS</subject><subject>Catalytic activity</subject><subject>Contact pressure</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Mass spectrometry</subject><subject>MASS SPECTROSCOPY</subject><subject>Microscopes</subject><subject>NANOPARTICLES</subject><subject>Nuclear reactors</subject><subject>OXIDATION</subject><subject>PALLADIUM</subject><subject>SAMPLE PREPARATION</subject><subject>Scientific apparatus &amp; instruments</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>Ultrahigh vacuum</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkdFrFDEQxoMo9qw--A9IwBd92JrJ5nYT30pptVARpD6H7OxsL-U2OZPsQ_Gfb6531sCQ4ePHx8x8jL0HcQaia7_AmTLQgVEv2AqENk3fyfYlWwnRqqbrlT5hb3K-F_WtAV6zE7nWrZRtv2J_bzfEf5HDEtP51Y-vPMTQYAylKtyVOHvkU0xIvHYpZow74rWSKz7c8SWMlPjG322aXaKcl0TchfGgFJqfwL2IrrjtQ6lu1Xz0xceQ37JXk9tmenf8T9nvq8vbi-_Nzc9v1xfnNw2q3pRGTjR0GpEEaeUA0aEZJr3fAVGRgqlfC4WEeuqVrI3CYRy16AcJRoqxPWUfD74xF28z-kK4qWMEwmLrGYxUsK7UpwO1S_HPQrnY2Wek7dYFiku20HVGt0oY9d_wGb2PSwp1BytBKt2Bgq5Snw_U_m450WR3yc8uPVgQdp-bBXvMrbIfjo7LMNP4TP4Lqn0EaC-Thg</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Roobol, S B</creator><creator>Cañas-Ventura, M E</creator><creator>Bergman, M</creator><creator>van Spronsen, M A</creator><creator>Onderwaater, W G</creator><creator>van der Tuijn, P C</creator><creator>Koehler, R</creator><creator>Ofitserov, A</creator><creator>van Baarle, G J C</creator><creator>Frenken, J W M</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9307-9851</orcidid></search><sort><creationdate>20150301</creationdate><title>The ReactorAFM: non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions</title><author>Roobol, S B ; Cañas-Ventura, M E ; Bergman, M ; van Spronsen, M A ; Onderwaater, W G ; van der Tuijn, P C ; Koehler, R ; Ofitserov, A ; van Baarle, G J C ; Frenken, J W M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-2feb68cce0e84a1ccac9bf82583cc4e41f7504cec8f7424ce4cbdd807b21920d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ATMOSPHERES</topic><topic>Atomic force microscopes</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>CARBON MONOXIDE</topic><topic>Catalysis</topic><topic>CATALYSTS</topic><topic>Catalytic activity</topic><topic>Contact pressure</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Mass spectrometry</topic><topic>MASS SPECTROSCOPY</topic><topic>Microscopes</topic><topic>NANOPARTICLES</topic><topic>Nuclear reactors</topic><topic>OXIDATION</topic><topic>PALLADIUM</topic><topic>SAMPLE PREPARATION</topic><topic>Scientific apparatus &amp; instruments</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>Ultrahigh vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roobol, S B</creatorcontrib><creatorcontrib>Cañas-Ventura, M E</creatorcontrib><creatorcontrib>Bergman, M</creatorcontrib><creatorcontrib>van Spronsen, M A</creatorcontrib><creatorcontrib>Onderwaater, W G</creatorcontrib><creatorcontrib>van der Tuijn, P C</creatorcontrib><creatorcontrib>Koehler, R</creatorcontrib><creatorcontrib>Ofitserov, A</creatorcontrib><creatorcontrib>van Baarle, G J C</creatorcontrib><creatorcontrib>Frenken, J W M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roobol, S B</au><au>Cañas-Ventura, M E</au><au>Bergman, M</au><au>van Spronsen, M A</au><au>Onderwaater, W G</au><au>van der Tuijn, P C</au><au>Koehler, R</au><au>Ofitserov, A</au><au>van Baarle, G J C</au><au>Frenken, J W M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ReactorAFM: non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>86</volume><issue>3</issue><spage>033706</spage><epage>033706</epage><pages>033706-033706</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25832237</pmid><doi>10.1063/1.4916194</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9307-9851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2015-03, Vol.86 (3), p.033706-033706
issn 0034-6748
1089-7623
language eng
recordid cdi_osti_scitechconnect_22392415
source AIP Journals; Alma/SFX Local Collection
subjects ATMOSPHERES
Atomic force microscopes
ATOMIC FORCE MICROSCOPY
CARBON MONOXIDE
Catalysis
CATALYSTS
Catalytic activity
Contact pressure
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Mass spectrometry
MASS SPECTROSCOPY
Microscopes
NANOPARTICLES
Nuclear reactors
OXIDATION
PALLADIUM
SAMPLE PREPARATION
Scientific apparatus & instruments
TEMPERATURE RANGE 0400-1000 K
Ultrahigh vacuum
title The ReactorAFM: non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ReactorAFM:%20non-contact%20atomic%20force%20microscope%20operating%20under%20high-pressure%20and%20high-temperature%20catalytic%20conditions&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Roobol,%20S%20B&rft.date=2015-03-01&rft.volume=86&rft.issue=3&rft.spage=033706&rft.epage=033706&rft.pages=033706-033706&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/10.1063/1.4916194&rft_dat=%3Cproquest_osti_%3E2124861416%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124861416&rft_id=info:pmid/25832237&rfr_iscdi=true