On Volterra quadratic stochastic operators with continual state space
Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1660 |
creator | Ganikhodjaev, Nasir Hamzah, Nur Zatul Akmar |
description | Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure. |
doi_str_mv | 10.1063/1.4915658 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22391652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22391652</sourcerecordid><originalsourceid>FETCH-LOGICAL-o218t-c24d981858b56f425b767baa4c714df01da8b96ee66a00288fafa0ffb04dabb53</originalsourceid><addsrcrecordid>eNotjs1KxDAYRYMoWEcXvkHAdcZ8aX6XMow_MDAbFXfDlzShldKMTQZf34qu7uVyuBxCboGvgev2HtbSgdLKnpEGlAJmNOhz0nDuJBOy_bgkV6V8ci6cMbYh2_1E3_NY4zwj_TphN2MdAi01hx7Lb83HuGx5LvR7qD0NearDdMJxYbBGWo4Y4jW5SDiWePOfK_L2uH3dPLPd_ull87BjWYCtLAjZOQtWWa90kkJ5o41HlMGA7BKHDq13OkatcTG0NmFCnpLnskPvVbsid3-_eVE7lDDUGPrFaIqhHoRoHWgl2h_J9k1J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Volterra quadratic stochastic operators with continual state space</title><source>AIP Journals Complete</source><creator>Ganikhodjaev, Nasir ; Hamzah, Nur Zatul Akmar</creator><creatorcontrib>Ganikhodjaev, Nasir ; Hamzah, Nur Zatul Akmar</creatorcontrib><description>Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4915658</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; FUNCTIONS ; MATHEMATICAL METHODS AND COMPUTING ; MATHEMATICAL OPERATORS ; MATHEMATICAL SOLUTIONS ; NONLINEAR PROBLEMS ; PROBABILITY ; SPACE ; STOCHASTIC PROCESSES ; TRANSFORMATIONS</subject><ispartof>AIP conference proceedings, 2015, Vol.1660 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22391652$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganikhodjaev, Nasir</creatorcontrib><creatorcontrib>Hamzah, Nur Zatul Akmar</creatorcontrib><title>On Volterra quadratic stochastic operators with continual state space</title><title>AIP conference proceedings</title><description>Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.</description><subject>ALGEBRA</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>FUNCTIONS</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PROBABILITY</subject><subject>SPACE</subject><subject>STOCHASTIC PROCESSES</subject><subject>TRANSFORMATIONS</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjs1KxDAYRYMoWEcXvkHAdcZ8aX6XMow_MDAbFXfDlzShldKMTQZf34qu7uVyuBxCboGvgev2HtbSgdLKnpEGlAJmNOhz0nDuJBOy_bgkV6V8ci6cMbYh2_1E3_NY4zwj_TphN2MdAi01hx7Lb83HuGx5LvR7qD0NearDdMJxYbBGWo4Y4jW5SDiWePOfK_L2uH3dPLPd_ull87BjWYCtLAjZOQtWWa90kkJ5o41HlMGA7BKHDq13OkatcTG0NmFCnpLnskPvVbsid3-_eVE7lDDUGPrFaIqhHoRoHWgl2h_J9k1J</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Ganikhodjaev, Nasir</creator><creator>Hamzah, Nur Zatul Akmar</creator><scope>OTOTI</scope></search><sort><creationdate>20150515</creationdate><title>On Volterra quadratic stochastic operators with continual state space</title><author>Ganikhodjaev, Nasir ; Hamzah, Nur Zatul Akmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o218t-c24d981858b56f425b767baa4c714df01da8b96ee66a00288fafa0ffb04dabb53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ALGEBRA</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>FUNCTIONS</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PROBABILITY</topic><topic>SPACE</topic><topic>STOCHASTIC PROCESSES</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganikhodjaev, Nasir</creatorcontrib><creatorcontrib>Hamzah, Nur Zatul Akmar</creatorcontrib><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganikhodjaev, Nasir</au><au>Hamzah, Nur Zatul Akmar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Volterra quadratic stochastic operators with continual state space</atitle><btitle>AIP conference proceedings</btitle><date>2015-05-15</date><risdate>2015</risdate><volume>1660</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.</abstract><cop>United States</cop><doi>10.1063/1.4915658</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2015, Vol.1660 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_22391652 |
source | AIP Journals Complete |
subjects | ALGEBRA CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS FUNCTIONS MATHEMATICAL METHODS AND COMPUTING MATHEMATICAL OPERATORS MATHEMATICAL SOLUTIONS NONLINEAR PROBLEMS PROBABILITY SPACE STOCHASTIC PROCESSES TRANSFORMATIONS |
title | On Volterra quadratic stochastic operators with continual state space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Volterra%20quadratic%20stochastic%20operators%20with%20continual%20state%20space&rft.btitle=AIP%20conference%20proceedings&rft.au=Ganikhodjaev,%20Nasir&rft.date=2015-05-15&rft.volume=1660&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4915658&rft_dat=%3Costi%3E22391652%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |