On Volterra quadratic stochastic operators with continual state space

Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ganikhodjaev, Nasir, Hamzah, Nur Zatul Akmar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1660
creator Ganikhodjaev, Nasir
Hamzah, Nur Zatul Akmar
description Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.
doi_str_mv 10.1063/1.4915658
format Conference Proceeding
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22391652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22391652</sourcerecordid><originalsourceid>FETCH-LOGICAL-o218t-c24d981858b56f425b767baa4c714df01da8b96ee66a00288fafa0ffb04dabb53</originalsourceid><addsrcrecordid>eNotjs1KxDAYRYMoWEcXvkHAdcZ8aX6XMow_MDAbFXfDlzShldKMTQZf34qu7uVyuBxCboGvgev2HtbSgdLKnpEGlAJmNOhz0nDuJBOy_bgkV6V8ci6cMbYh2_1E3_NY4zwj_TphN2MdAi01hx7Lb83HuGx5LvR7qD0NearDdMJxYbBGWo4Y4jW5SDiWePOfK_L2uH3dPLPd_ull87BjWYCtLAjZOQtWWa90kkJ5o41HlMGA7BKHDq13OkatcTG0NmFCnpLnskPvVbsid3-_eVE7lDDUGPrFaIqhHoRoHWgl2h_J9k1J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Volterra quadratic stochastic operators with continual state space</title><source>AIP Journals Complete</source><creator>Ganikhodjaev, Nasir ; Hamzah, Nur Zatul Akmar</creator><creatorcontrib>Ganikhodjaev, Nasir ; Hamzah, Nur Zatul Akmar</creatorcontrib><description>Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4915658</identifier><language>eng</language><publisher>United States</publisher><subject>ALGEBRA ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; FUNCTIONS ; MATHEMATICAL METHODS AND COMPUTING ; MATHEMATICAL OPERATORS ; MATHEMATICAL SOLUTIONS ; NONLINEAR PROBLEMS ; PROBABILITY ; SPACE ; STOCHASTIC PROCESSES ; TRANSFORMATIONS</subject><ispartof>AIP conference proceedings, 2015, Vol.1660 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22391652$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ganikhodjaev, Nasir</creatorcontrib><creatorcontrib>Hamzah, Nur Zatul Akmar</creatorcontrib><title>On Volterra quadratic stochastic operators with continual state space</title><title>AIP conference proceedings</title><description>Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.</description><subject>ALGEBRA</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>FUNCTIONS</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PROBABILITY</subject><subject>SPACE</subject><subject>STOCHASTIC PROCESSES</subject><subject>TRANSFORMATIONS</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjs1KxDAYRYMoWEcXvkHAdcZ8aX6XMow_MDAbFXfDlzShldKMTQZf34qu7uVyuBxCboGvgev2HtbSgdLKnpEGlAJmNOhz0nDuJBOy_bgkV6V8ci6cMbYh2_1E3_NY4zwj_TphN2MdAi01hx7Lb83HuGx5LvR7qD0NearDdMJxYbBGWo4Y4jW5SDiWePOfK_L2uH3dPLPd_ull87BjWYCtLAjZOQtWWa90kkJ5o41HlMGA7BKHDq13OkatcTG0NmFCnpLnskPvVbsid3-_eVE7lDDUGPrFaIqhHoRoHWgl2h_J9k1J</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Ganikhodjaev, Nasir</creator><creator>Hamzah, Nur Zatul Akmar</creator><scope>OTOTI</scope></search><sort><creationdate>20150515</creationdate><title>On Volterra quadratic stochastic operators with continual state space</title><author>Ganikhodjaev, Nasir ; Hamzah, Nur Zatul Akmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o218t-c24d981858b56f425b767baa4c714df01da8b96ee66a00288fafa0ffb04dabb53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ALGEBRA</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>FUNCTIONS</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PROBABILITY</topic><topic>SPACE</topic><topic>STOCHASTIC PROCESSES</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganikhodjaev, Nasir</creatorcontrib><creatorcontrib>Hamzah, Nur Zatul Akmar</creatorcontrib><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganikhodjaev, Nasir</au><au>Hamzah, Nur Zatul Akmar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Volterra quadratic stochastic operators with continual state space</atitle><btitle>AIP conference proceedings</btitle><date>2015-05-15</date><risdate>2015</risdate><volume>1660</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.</abstract><cop>United States</cop><doi>10.1063/1.4915658</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2015, Vol.1660 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_osti_scitechconnect_22391652
source AIP Journals Complete
subjects ALGEBRA
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
FUNCTIONS
MATHEMATICAL METHODS AND COMPUTING
MATHEMATICAL OPERATORS
MATHEMATICAL SOLUTIONS
NONLINEAR PROBLEMS
PROBABILITY
SPACE
STOCHASTIC PROCESSES
TRANSFORMATIONS
title On Volterra quadratic stochastic operators with continual state space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Volterra%20quadratic%20stochastic%20operators%20with%20continual%20state%20space&rft.btitle=AIP%20conference%20proceedings&rft.au=Ganikhodjaev,%20Nasir&rft.date=2015-05-15&rft.volume=1660&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4915658&rft_dat=%3Costi%3E22391652%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true