Understanding neutron production in the deuterium dense plasma focus
The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present re...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1639 |
creator | Appelbe, Brian Chittenden, Jeremy |
description | The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production. |
doi_str_mv | 10.1063/1.4904765 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22390836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126493559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-fed0bc41456bdaf4434e91385934195fef02d31d823a1380f0956a05c51f767e3</originalsourceid><addsrcrecordid>eNpFT01LAzEUDKLgWj34DxY8b30vX7s5Sv2EghcL3pY0ebFb2mzdZP-_AQVPM7wZZt4wdouwRNDiHpfSgGy1OmMVKoVNq1GfswrAyIZL8XnJrlLaA3DTtl3FHjfR05SyjX6IX3WkOU9jrE_T6GeXh0KHWOcd1b4oNA3zsbCYqD4dbDraOoxuTtfsIthDops_XLDN89PH6rVZv7-8rR7WjeMKcxPIw9ZJlEpvvQ1SCkkGRaeMkGhUoADcC_QdF7acIYBR2oJyCkOrWxILdvebO6Y89MkNmdzOjTGSyz3nwkAn9L-rjPieKeV-P85TLI_1HLmWRqjS-ANodVdP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126493559</pqid></control><display><type>conference_proceeding</type><title>Understanding neutron production in the deuterium dense plasma focus</title><source>American Institute of Physics (AIP) Journals</source><creator>Appelbe, Brian ; Chittenden, Jeremy</creator><creatorcontrib>Appelbe, Brian ; Chittenden, Jeremy</creatorcontrib><description>The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4904765</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ANODES ; Dense plasmas ; DEUTERIUM ; DEUTERIUM IONS ; ELECTRIC FIELDS ; ELECTROMAGNETIC FIELDS ; KEV RANGE ; LASER IMPLOSIONS ; MAGNETOHYDRODYNAMICS ; MEV RANGE ; NEUTRON SOURCES ; NEUTRONS ; Plasma ; PLASMA DENSITY ; PLASMA FOCUS ; PLASMA INSTABILITY ; Stagnation</subject><ispartof>AIP conference proceedings, 2014, Vol.1639 (1), p.14</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-fed0bc41456bdaf4434e91385934195fef02d31d823a1380f0956a05c51f767e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,777,781,786,787,882,23911,23912,25121,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22390836$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Appelbe, Brian</creatorcontrib><creatorcontrib>Chittenden, Jeremy</creatorcontrib><title>Understanding neutron production in the deuterium dense plasma focus</title><title>AIP conference proceedings</title><description>The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ANODES</subject><subject>Dense plasmas</subject><subject>DEUTERIUM</subject><subject>DEUTERIUM IONS</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTROMAGNETIC FIELDS</subject><subject>KEV RANGE</subject><subject>LASER IMPLOSIONS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MEV RANGE</subject><subject>NEUTRON SOURCES</subject><subject>NEUTRONS</subject><subject>Plasma</subject><subject>PLASMA DENSITY</subject><subject>PLASMA FOCUS</subject><subject>PLASMA INSTABILITY</subject><subject>Stagnation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFT01LAzEUDKLgWj34DxY8b30vX7s5Sv2EghcL3pY0ebFb2mzdZP-_AQVPM7wZZt4wdouwRNDiHpfSgGy1OmMVKoVNq1GfswrAyIZL8XnJrlLaA3DTtl3FHjfR05SyjX6IX3WkOU9jrE_T6GeXh0KHWOcd1b4oNA3zsbCYqD4dbDraOoxuTtfsIthDops_XLDN89PH6rVZv7-8rR7WjeMKcxPIw9ZJlEpvvQ1SCkkGRaeMkGhUoADcC_QdF7acIYBR2oJyCkOrWxILdvebO6Y89MkNmdzOjTGSyz3nwkAn9L-rjPieKeV-P85TLI_1HLmWRqjS-ANodVdP</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Appelbe, Brian</creator><creator>Chittenden, Jeremy</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141215</creationdate><title>Understanding neutron production in the deuterium dense plasma focus</title><author>Appelbe, Brian ; Chittenden, Jeremy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-fed0bc41456bdaf4434e91385934195fef02d31d823a1380f0956a05c51f767e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ANODES</topic><topic>Dense plasmas</topic><topic>DEUTERIUM</topic><topic>DEUTERIUM IONS</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTROMAGNETIC FIELDS</topic><topic>KEV RANGE</topic><topic>LASER IMPLOSIONS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MEV RANGE</topic><topic>NEUTRON SOURCES</topic><topic>NEUTRONS</topic><topic>Plasma</topic><topic>PLASMA DENSITY</topic><topic>PLASMA FOCUS</topic><topic>PLASMA INSTABILITY</topic><topic>Stagnation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Appelbe, Brian</creatorcontrib><creatorcontrib>Chittenden, Jeremy</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appelbe, Brian</au><au>Chittenden, Jeremy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Understanding neutron production in the deuterium dense plasma focus</atitle><btitle>AIP conference proceedings</btitle><date>2014-12-15</date><risdate>2014</risdate><volume>1639</volume><issue>1</issue><epage>14</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4904765</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2014, Vol.1639 (1), p.14 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_22390836 |
source | American Institute of Physics (AIP) Journals |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ANODES Dense plasmas DEUTERIUM DEUTERIUM IONS ELECTRIC FIELDS ELECTROMAGNETIC FIELDS KEV RANGE LASER IMPLOSIONS MAGNETOHYDRODYNAMICS MEV RANGE NEUTRON SOURCES NEUTRONS Plasma PLASMA DENSITY PLASMA FOCUS PLASMA INSTABILITY Stagnation |
title | Understanding neutron production in the deuterium dense plasma focus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Understanding%20neutron%20production%20in%20the%20deuterium%20dense%20plasma%20focus&rft.btitle=AIP%20conference%20proceedings&rft.au=Appelbe,%20Brian&rft.date=2014-12-15&rft.volume=1639&rft.issue=1&rft.epage=14&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4904765&rft_dat=%3Cproquest_osti_%3E2126493559%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126493559&rft_id=info:pmid/&rfr_iscdi=true |