A micropillar for cavity optomechanics

Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuhn Aurélien, Neuhaus Leonhard, Emmanuel, Van Brackel, Chartier, Claude, Ducloux Olivier, Le Traon Olivier, Michel, Christophe, Pinard, Laurent, Flaminio Raffaele, Deléglise Samuel, Briant Tristan, Pierre-François, Cohadon, Heidmann Antoine
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page
container_title
container_volume 1633
creator Kuhn Aurélien
Neuhaus Leonhard
Emmanuel, Van Brackel
Chartier, Claude
Ducloux Olivier
Le Traon Olivier
Michel, Christophe
Pinard, Laurent
Flaminio Raffaele
Deléglise Samuel
Briant Tristan
Pierre-François, Cohadon
Heidmann Antoine
description Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.
doi_str_mv 10.1063/1.4903097
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22390722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126491885</sourcerecordid><originalsourceid>FETCH-LOGICAL-o246t-9802f18fcfcf454077838a69f9392b5fd865b9db87c03ea245d3cffe01d535383</originalsourceid><addsrcrecordid>eNo9jk1LxDAYhIMoWFcP_oOC4K3rm7z5PC6LX7DgRcFbSdMEs3Sb2mQF_70FRQZmLsPMQ8g1hTUFiXd0zQ0gGHVCKioEbZSk8pRUAIY3jOP7ObnIeQ_AjFK6Ireb-hDdnKY4DHauQ5prZ79i-a7TVNLBuw87RpcvyVmwQ_ZXf7kibw_3r9unZvfy-Lzd7JrEuCyN0cAC1cEt4oLDcoHaShMMGtaJ0GspOtN3WjlAbxkXPboQPNBeoECNK3Lzu5tyiW12sSwELo2jd6VlDA2oxf9b05w-jz6Xdp-O87iAtYwyyQ3VWuAPmMpMHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126491885</pqid></control><display><type>conference_proceeding</type><title>A micropillar for cavity optomechanics</title><source>AIP Journals Complete</source><creator>Kuhn Aurélien ; Neuhaus Leonhard ; Emmanuel, Van Brackel ; Chartier, Claude ; Ducloux Olivier ; Le Traon Olivier ; Michel, Christophe ; Pinard, Laurent ; Flaminio Raffaele ; Deléglise Samuel ; Briant Tristan ; Pierre-François, Cohadon ; Heidmann Antoine</creator><creatorcontrib>Kuhn Aurélien ; Neuhaus Leonhard ; Emmanuel, Van Brackel ; Chartier, Claude ; Ducloux Olivier ; Le Traon Olivier ; Michel, Christophe ; Pinard, Laurent ; Flaminio Raffaele ; Deléglise Samuel ; Briant Tristan ; Pierre-François, Cohadon ; Heidmann Antoine</creatorcontrib><description>Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4903097</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>CAVITY RESONATORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COOLING ; Cryogenic cooling ; DILUTION ; Fabry-Perot interferometers ; Ground state ; GROUND STATES ; INTERFEROMETRY ; MIRRORS ; NOISE ; Opto-mechanics ; Q factors ; QUALITY FACTOR ; QUANTUM MECHANICS ; QUARTZ ; RADIATION PRESSURE ; Resonators ; Thermal noise</subject><ispartof>AIP conference proceedings, 2014, Vol.1633 (1), p.70</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22390722$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuhn Aurélien</creatorcontrib><creatorcontrib>Neuhaus Leonhard</creatorcontrib><creatorcontrib>Emmanuel, Van Brackel</creatorcontrib><creatorcontrib>Chartier, Claude</creatorcontrib><creatorcontrib>Ducloux Olivier</creatorcontrib><creatorcontrib>Le Traon Olivier</creatorcontrib><creatorcontrib>Michel, Christophe</creatorcontrib><creatorcontrib>Pinard, Laurent</creatorcontrib><creatorcontrib>Flaminio Raffaele</creatorcontrib><creatorcontrib>Deléglise Samuel</creatorcontrib><creatorcontrib>Briant Tristan</creatorcontrib><creatorcontrib>Pierre-François, Cohadon</creatorcontrib><creatorcontrib>Heidmann Antoine</creatorcontrib><title>A micropillar for cavity optomechanics</title><title>AIP conference proceedings</title><description>Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.</description><subject>CAVITY RESONATORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COOLING</subject><subject>Cryogenic cooling</subject><subject>DILUTION</subject><subject>Fabry-Perot interferometers</subject><subject>Ground state</subject><subject>GROUND STATES</subject><subject>INTERFEROMETRY</subject><subject>MIRRORS</subject><subject>NOISE</subject><subject>Opto-mechanics</subject><subject>Q factors</subject><subject>QUALITY FACTOR</subject><subject>QUANTUM MECHANICS</subject><subject>QUARTZ</subject><subject>RADIATION PRESSURE</subject><subject>Resonators</subject><subject>Thermal noise</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9jk1LxDAYhIMoWFcP_oOC4K3rm7z5PC6LX7DgRcFbSdMEs3Sb2mQF_70FRQZmLsPMQ8g1hTUFiXd0zQ0gGHVCKioEbZSk8pRUAIY3jOP7ObnIeQ_AjFK6Ireb-hDdnKY4DHauQ5prZ79i-a7TVNLBuw87RpcvyVmwQ_ZXf7kibw_3r9unZvfy-Lzd7JrEuCyN0cAC1cEt4oLDcoHaShMMGtaJ0GspOtN3WjlAbxkXPboQPNBeoECNK3Lzu5tyiW12sSwELo2jd6VlDA2oxf9b05w-jz6Xdp-O87iAtYwyyQ3VWuAPmMpMHw</recordid><startdate>20141204</startdate><enddate>20141204</enddate><creator>Kuhn Aurélien</creator><creator>Neuhaus Leonhard</creator><creator>Emmanuel, Van Brackel</creator><creator>Chartier, Claude</creator><creator>Ducloux Olivier</creator><creator>Le Traon Olivier</creator><creator>Michel, Christophe</creator><creator>Pinard, Laurent</creator><creator>Flaminio Raffaele</creator><creator>Deléglise Samuel</creator><creator>Briant Tristan</creator><creator>Pierre-François, Cohadon</creator><creator>Heidmann Antoine</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141204</creationdate><title>A micropillar for cavity optomechanics</title><author>Kuhn Aurélien ; Neuhaus Leonhard ; Emmanuel, Van Brackel ; Chartier, Claude ; Ducloux Olivier ; Le Traon Olivier ; Michel, Christophe ; Pinard, Laurent ; Flaminio Raffaele ; Deléglise Samuel ; Briant Tristan ; Pierre-François, Cohadon ; Heidmann Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o246t-9802f18fcfcf454077838a69f9392b5fd865b9db87c03ea245d3cffe01d535383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CAVITY RESONATORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COOLING</topic><topic>Cryogenic cooling</topic><topic>DILUTION</topic><topic>Fabry-Perot interferometers</topic><topic>Ground state</topic><topic>GROUND STATES</topic><topic>INTERFEROMETRY</topic><topic>MIRRORS</topic><topic>NOISE</topic><topic>Opto-mechanics</topic><topic>Q factors</topic><topic>QUALITY FACTOR</topic><topic>QUANTUM MECHANICS</topic><topic>QUARTZ</topic><topic>RADIATION PRESSURE</topic><topic>Resonators</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn Aurélien</creatorcontrib><creatorcontrib>Neuhaus Leonhard</creatorcontrib><creatorcontrib>Emmanuel, Van Brackel</creatorcontrib><creatorcontrib>Chartier, Claude</creatorcontrib><creatorcontrib>Ducloux Olivier</creatorcontrib><creatorcontrib>Le Traon Olivier</creatorcontrib><creatorcontrib>Michel, Christophe</creatorcontrib><creatorcontrib>Pinard, Laurent</creatorcontrib><creatorcontrib>Flaminio Raffaele</creatorcontrib><creatorcontrib>Deléglise Samuel</creatorcontrib><creatorcontrib>Briant Tristan</creatorcontrib><creatorcontrib>Pierre-François, Cohadon</creatorcontrib><creatorcontrib>Heidmann Antoine</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn Aurélien</au><au>Neuhaus Leonhard</au><au>Emmanuel, Van Brackel</au><au>Chartier, Claude</au><au>Ducloux Olivier</au><au>Le Traon Olivier</au><au>Michel, Christophe</au><au>Pinard, Laurent</au><au>Flaminio Raffaele</au><au>Deléglise Samuel</au><au>Briant Tristan</au><au>Pierre-François, Cohadon</au><au>Heidmann Antoine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A micropillar for cavity optomechanics</atitle><btitle>AIP conference proceedings</btitle><date>2014-12-04</date><risdate>2014</risdate><volume>1633</volume><issue>1</issue><epage>70</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4903097</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2014, Vol.1633 (1), p.70
issn 0094-243X
1551-7616
language eng
recordid cdi_osti_scitechconnect_22390722
source AIP Journals Complete
subjects CAVITY RESONATORS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COOLING
Cryogenic cooling
DILUTION
Fabry-Perot interferometers
Ground state
GROUND STATES
INTERFEROMETRY
MIRRORS
NOISE
Opto-mechanics
Q factors
QUALITY FACTOR
QUANTUM MECHANICS
QUARTZ
RADIATION PRESSURE
Resonators
Thermal noise
title A micropillar for cavity optomechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20micropillar%20for%20cavity%20optomechanics&rft.btitle=AIP%20conference%20proceedings&rft.au=Kuhn%20Aur%C3%A9lien&rft.date=2014-12-04&rft.volume=1633&rft.issue=1&rft.epage=70&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4903097&rft_dat=%3Cproquest_osti_%3E2126491885%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126491885&rft_id=info:pmid/&rfr_iscdi=true