Choosing the forcing terms in an inexact Newton method

An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eisenstat, S.C., Walker, H.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 17
creator Eisenstat, S.C.
Walker, H.F.
description An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.
doi_str_mv 10.1137/0917003
format Conference Proceeding
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_223833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>223833</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_2238333</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMo-MUrxANU82mbZl0UV67clxJfTcTmQfNAj-8HD-BmZhbD2FqKrZTa7ISVRgg9YjMpbJEZac3402WeVcoUUzZP6SaELHOrZqysPWIK8crJA-9wcN-GoU88RN7GN-HZOuIneBBG3gN5vCzZpGvvCVY_L9jmsD_XxwwThSa5QOC8wxjBUaOUrrTW_zwvEEY4_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Choosing the forcing terms in an inexact Newton method</title><source>SIAM Journals</source><creator>Eisenstat, S.C. ; Walker, H.F.</creator><creatorcontrib>Eisenstat, S.C. ; Walker, H.F. ; National Science Foundation, Washington, DC (United States) ; Front Range Scientific Computations, Inc., Boulder, CO (United States) ; USDOE, Washington, DC (United States)</creatorcontrib><description>An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0917003</identifier><language>eng</language><publisher>United States</publisher><subject>FORCING FUNCTIONS ; MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS ; NEWTON METHOD ; POLYNOMIALS</subject><creationdate>1994</creationdate><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,776,780,785,881,23909,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/223833$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisenstat, S.C.</creatorcontrib><creatorcontrib>Walker, H.F.</creatorcontrib><creatorcontrib>National Science Foundation, Washington, DC (United States)</creatorcontrib><creatorcontrib>Front Range Scientific Computations, Inc., Boulder, CO (United States)</creatorcontrib><creatorcontrib>USDOE, Washington, DC (United States)</creatorcontrib><title>Choosing the forcing terms in an inexact Newton method</title><description>An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.</description><subject>FORCING FUNCTIONS</subject><subject>MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS</subject><subject>NEWTON METHOD</subject><subject>POLYNOMIALS</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqNiksKwjAUAIMo-MUrxANU82mbZl0UV67clxJfTcTmQfNAj-8HD-BmZhbD2FqKrZTa7ISVRgg9YjMpbJEZac3402WeVcoUUzZP6SaELHOrZqysPWIK8crJA-9wcN-GoU88RN7GN-HZOuIneBBG3gN5vCzZpGvvCVY_L9jmsD_XxwwThSa5QOC8wxjBUaOUrrTW_zwvEEY4_g</recordid><startdate>19941231</startdate><enddate>19941231</enddate><creator>Eisenstat, S.C.</creator><creator>Walker, H.F.</creator><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>19941231</creationdate><title>Choosing the forcing terms in an inexact Newton method</title><author>Eisenstat, S.C. ; Walker, H.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_2238333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>FORCING FUNCTIONS</topic><topic>MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS</topic><topic>NEWTON METHOD</topic><topic>POLYNOMIALS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenstat, S.C.</creatorcontrib><creatorcontrib>Walker, H.F.</creatorcontrib><creatorcontrib>National Science Foundation, Washington, DC (United States)</creatorcontrib><creatorcontrib>Front Range Scientific Computations, Inc., Boulder, CO (United States)</creatorcontrib><creatorcontrib>USDOE, Washington, DC (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenstat, S.C.</au><au>Walker, H.F.</au><aucorp>National Science Foundation, Washington, DC (United States)</aucorp><aucorp>Front Range Scientific Computations, Inc., Boulder, CO (United States)</aucorp><aucorp>USDOE, Washington, DC (United States)</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Choosing the forcing terms in an inexact Newton method</atitle><date>1994-12-31</date><risdate>1994</risdate><volume>17</volume><issue>1</issue><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.</abstract><cop>United States</cop><doi>10.1137/0917003</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof
issn 1064-8275
1095-7197
language eng
recordid cdi_osti_scitechconnect_223833
source SIAM Journals
subjects FORCING FUNCTIONS
MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS
NEWTON METHOD
POLYNOMIALS
title Choosing the forcing terms in an inexact Newton method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Choosing%20the%20forcing%20terms%20in%20an%20inexact%20Newton%20method&rft.au=Eisenstat,%20S.C.&rft.aucorp=National%20Science%20Foundation,%20Washington,%20DC%20(United%20States)&rft.date=1994-12-31&rft.volume=17&rft.issue=1&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/0917003&rft_dat=%3Costi%3E223833%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true