The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2014-09, Vol.273, p.589-597
Hauptverfasser: Sellier, J.M., Dimov, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue
container_start_page 589
container_title Journal of computational physics
container_volume 273
creator Sellier, J.M.
Dimov, I.
description The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.
doi_str_mv 10.1016/j.jcp.2014.05.039
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22382112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999114004021</els_id><sourcerecordid>1620084470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e25e36a52af6a543f74f4c73c76efa25df7aef479a54ae9916f1c3131dcb19b33</originalsourceid><addsrcrecordid>eNqNkUFrGzEQhUVpIW7SH5CboJdedqORdlcWPRXTpIGEXFLam5C1o1pmV3IkbcH_PjLuueQyAzPfGx7zCLkG1gKD4Wbf7u2h5Qy6lvUtE-odWQFTrOEShvdkxRiHRikFF-RjznvG2Lrv1ivy-3mHdDbh2GzjeKS__J-AiT7GUJBuTJoinbHs4khdTLT4GZsRDxhGDIWabeODLz7Sl8WEssw0-3mZTJ2EfEU-ODNl_PSvX5Kft9-fNz-ah6e7-823h8YKBaVB3qMYTM-Nq7UTTnaus1JYOaAzvB-dNOg6qerSYPU_OLACBIx2C2orxCX5fL4bc_E6W1_Q7mwMAW3RnIs1B-CV-nKmDim-LJiLnn22OE0mYFyyhkFKJVU18AaU1-d1nWQVhTNqU8w5odOH5GeTjhqYPsWi97rGok-xaNbrGkvVfD1rsD7lr8d08ozB4ujTyfIY_X_Ur54qlRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620084470</pqid></control><display><type>article</type><title>The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sellier, J.M. ; Dimov, I.</creator><creatorcontrib>Sellier, J.M. ; Dimov, I.</creatorcontrib><description>The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.05.039</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ab-initio ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; COMPUTERIZED SIMULATION ; Correlation ; DISTRIBUTION FUNCTIONS ; MANY-BODY PROBLEM ; Mathematical analysis ; Mathematical models ; MONTE CARLO METHOD ; Monte Carlo methods ; POTENTIALS ; QUANTUM ENTANGLEMENT ; Quantum many-body problem ; QUANTUM MECHANICS ; QUANTUM SYSTEMS ; Quantum theory ; SCHROEDINGER EQUATION ; SPIN ; TIME DEPENDENCE ; Time-dependent Wigner equation</subject><ispartof>Journal of computational physics, 2014-09, Vol.273, p.589-597</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e25e36a52af6a543f74f4c73c76efa25df7aef479a54ae9916f1c3131dcb19b33</citedby><cites>FETCH-LOGICAL-c391t-e25e36a52af6a543f74f4c73c76efa25df7aef479a54ae9916f1c3131dcb19b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2014.05.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22382112$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sellier, J.M.</creatorcontrib><creatorcontrib>Dimov, I.</creatorcontrib><title>The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations</title><title>Journal of computational physics</title><description>The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.</description><subject>Ab-initio</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Correlation</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>MANY-BODY PROBLEM</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>POTENTIALS</subject><subject>QUANTUM ENTANGLEMENT</subject><subject>Quantum many-body problem</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM SYSTEMS</subject><subject>Quantum theory</subject><subject>SCHROEDINGER EQUATION</subject><subject>SPIN</subject><subject>TIME DEPENDENCE</subject><subject>Time-dependent Wigner equation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUFrGzEQhUVpIW7SH5CboJdedqORdlcWPRXTpIGEXFLam5C1o1pmV3IkbcH_PjLuueQyAzPfGx7zCLkG1gKD4Wbf7u2h5Qy6lvUtE-odWQFTrOEShvdkxRiHRikFF-RjznvG2Lrv1ivy-3mHdDbh2GzjeKS__J-AiT7GUJBuTJoinbHs4khdTLT4GZsRDxhGDIWabeODLz7Sl8WEssw0-3mZTJ2EfEU-ODNl_PSvX5Kft9-fNz-ah6e7-823h8YKBaVB3qMYTM-Nq7UTTnaus1JYOaAzvB-dNOg6qerSYPU_OLACBIx2C2orxCX5fL4bc_E6W1_Q7mwMAW3RnIs1B-CV-nKmDim-LJiLnn22OE0mYFyyhkFKJVU18AaU1-d1nWQVhTNqU8w5odOH5GeTjhqYPsWi97rGok-xaNbrGkvVfD1rsD7lr8d08ozB4ujTyfIY_X_Ur54qlRU</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Sellier, J.M.</creator><creator>Dimov, I.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20140915</creationdate><title>The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations</title><author>Sellier, J.M. ; Dimov, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e25e36a52af6a543f74f4c73c76efa25df7aef479a54ae9916f1c3131dcb19b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ab-initio</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Correlation</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>MANY-BODY PROBLEM</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>POTENTIALS</topic><topic>QUANTUM ENTANGLEMENT</topic><topic>Quantum many-body problem</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM SYSTEMS</topic><topic>Quantum theory</topic><topic>SCHROEDINGER EQUATION</topic><topic>SPIN</topic><topic>TIME DEPENDENCE</topic><topic>Time-dependent Wigner equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sellier, J.M.</creatorcontrib><creatorcontrib>Dimov, I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sellier, J.M.</au><au>Dimov, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations</atitle><jtitle>Journal of computational physics</jtitle><date>2014-09-15</date><risdate>2014</risdate><volume>273</volume><spage>589</spage><epage>597</epage><pages>589-597</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2014.05.039</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2014-09, Vol.273, p.589-597
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_22382112
source ScienceDirect Journals (5 years ago - present)
subjects Ab-initio
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer simulation
COMPUTERIZED SIMULATION
Correlation
DISTRIBUTION FUNCTIONS
MANY-BODY PROBLEM
Mathematical analysis
Mathematical models
MONTE CARLO METHOD
Monte Carlo methods
POTENTIALS
QUANTUM ENTANGLEMENT
Quantum many-body problem
QUANTUM MECHANICS
QUANTUM SYSTEMS
Quantum theory
SCHROEDINGER EQUATION
SPIN
TIME DEPENDENCE
Time-dependent Wigner equation
title The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20many-body%20Wigner%20Monte%20Carlo%20method%20for%20time-dependent%20ab-initio%20quantum%20simulations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Sellier,%20J.M.&rft.date=2014-09-15&rft.volume=273&rft.spage=589&rft.epage=597&rft.pages=589-597&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.05.039&rft_dat=%3Cproquest_osti_%3E1620084470%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620084470&rft_id=info:pmid/&rft_els_id=S0021999114004021&rfr_iscdi=true