MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES
We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-curren...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2014-07, Vol.789 (2), p.1-20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 789 |
creator | Bykov, Andrei M Ellison, Donald C Osipov, Sergei M Vladimirov, Andrey E |
description | We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size. |
doi_str_mv | 10.1088/0004-637X/789/2/137 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22365673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718968433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5c2e8ee0d2c0d2337dec43a9b8578b1e5eddb9280ad845660cf42e929c0e6cb33</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EEkvpE3CxxIVLWMdOYvtoHGdrNetUSRbByco6XrFouylxeugr9KmbaKFnDqPRjL5_NNIHwKcYfY0RY2uEUBJlhP5YU8bXeB0T-gas4pSwKCEpfQtWr8R78CGE38uIOV-B563YGNVqCQutyhyK7V2pCy1FqysDtYGmMqU2StQw10Wxa_R3BZubSt5CIaUqVf2PlOUu12YDa9VURpgWCpMv6eh1Iatmq2VUi58wr-c7S6ppxTdd6lar5iN4d-hOwV__7VdgV6hW3kRltZkfKiNHGJui1GHPvEc9dnMRQnvvEtLxPUsp28c-9X2_55ihrmdJmmXIHRLsOeYO-cztCbkCny93hzAdbXDHybtfbjifvZssxiRLM7pQXy7Uwzj8efRhsvfH4Pzp1J398BhsTGPGM5aQ_0ERj7MkJXRGyQV14xDC6A_2YTzed-OTjZFdVNrFjF1E2VmlxXZWSV4AcFqGAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709164537</pqid></control><display><type>article</type><title>MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bykov, Andrei M ; Ellison, Donald C ; Osipov, Sergei M ; Vladimirov, Andrey E</creator><creatorcontrib>Bykov, Andrei M ; Ellison, Donald C ; Osipov, Sergei M ; Vladimirov, Andrey E</creatorcontrib><description>We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/789/2/137</identifier><language>eng</language><publisher>United States</publisher><subject>ACCELERATION ; ALFVEN WAVES ; AMPLIFICATION ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Computational fluid dynamics ; COMPUTERIZED SIMULATION ; COSMIC RADIATION ; DENSITY ; DIFFUSION ; FLUCTUATIONS ; Fluid flow ; INSTABILITY ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; Mathematical models ; MONTE CARLO METHOD ; PROTON TEMPERATURE ; SCALE MODELS ; SCATTERING ; SHOCK WAVES ; SPECTRA ; SUPERNOVA REMNANTS ; TURBULENCE ; Turbulent flow ; VELOCITY</subject><ispartof>The Astrophysical journal, 2014-07, Vol.789 (2), p.1-20</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5c2e8ee0d2c0d2337dec43a9b8578b1e5eddb9280ad845660cf42e929c0e6cb33</citedby><cites>FETCH-LOGICAL-c388t-5c2e8ee0d2c0d2337dec43a9b8578b1e5eddb9280ad845660cf42e929c0e6cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22365673$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bykov, Andrei M</creatorcontrib><creatorcontrib>Ellison, Donald C</creatorcontrib><creatorcontrib>Osipov, Sergei M</creatorcontrib><creatorcontrib>Vladimirov, Andrey E</creatorcontrib><title>MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES</title><title>The Astrophysical journal</title><description>We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.</description><subject>ACCELERATION</subject><subject>ALFVEN WAVES</subject><subject>AMPLIFICATION</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Computational fluid dynamics</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COSMIC RADIATION</subject><subject>DENSITY</subject><subject>DIFFUSION</subject><subject>FLUCTUATIONS</subject><subject>Fluid flow</subject><subject>INSTABILITY</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>Mathematical models</subject><subject>MONTE CARLO METHOD</subject><subject>PROTON TEMPERATURE</subject><subject>SCALE MODELS</subject><subject>SCATTERING</subject><subject>SHOCK WAVES</subject><subject>SPECTRA</subject><subject>SUPERNOVA REMNANTS</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><subject>VELOCITY</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi0EEkvpE3CxxIVLWMdOYvtoHGdrNetUSRbByco6XrFouylxeugr9KmbaKFnDqPRjL5_NNIHwKcYfY0RY2uEUBJlhP5YU8bXeB0T-gas4pSwKCEpfQtWr8R78CGE38uIOV-B563YGNVqCQutyhyK7V2pCy1FqysDtYGmMqU2StQw10Wxa_R3BZubSt5CIaUqVf2PlOUu12YDa9VURpgWCpMv6eh1Iatmq2VUi58wr-c7S6ppxTdd6lar5iN4d-hOwV__7VdgV6hW3kRltZkfKiNHGJui1GHPvEc9dnMRQnvvEtLxPUsp28c-9X2_55ihrmdJmmXIHRLsOeYO-cztCbkCny93hzAdbXDHybtfbjifvZssxiRLM7pQXy7Uwzj8efRhsvfH4Pzp1J398BhsTGPGM5aQ_0ERj7MkJXRGyQV14xDC6A_2YTzed-OTjZFdVNrFjF1E2VmlxXZWSV4AcFqGAA</recordid><startdate>20140710</startdate><enddate>20140710</enddate><creator>Bykov, Andrei M</creator><creator>Ellison, Donald C</creator><creator>Osipov, Sergei M</creator><creator>Vladimirov, Andrey E</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140710</creationdate><title>MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES</title><author>Bykov, Andrei M ; Ellison, Donald C ; Osipov, Sergei M ; Vladimirov, Andrey E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5c2e8ee0d2c0d2337dec43a9b8578b1e5eddb9280ad845660cf42e929c0e6cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ACCELERATION</topic><topic>ALFVEN WAVES</topic><topic>AMPLIFICATION</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Computational fluid dynamics</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COSMIC RADIATION</topic><topic>DENSITY</topic><topic>DIFFUSION</topic><topic>FLUCTUATIONS</topic><topic>Fluid flow</topic><topic>INSTABILITY</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>Mathematical models</topic><topic>MONTE CARLO METHOD</topic><topic>PROTON TEMPERATURE</topic><topic>SCALE MODELS</topic><topic>SCATTERING</topic><topic>SHOCK WAVES</topic><topic>SPECTRA</topic><topic>SUPERNOVA REMNANTS</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bykov, Andrei M</creatorcontrib><creatorcontrib>Ellison, Donald C</creatorcontrib><creatorcontrib>Osipov, Sergei M</creatorcontrib><creatorcontrib>Vladimirov, Andrey E</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bykov, Andrei M</au><au>Ellison, Donald C</au><au>Osipov, Sergei M</au><au>Vladimirov, Andrey E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES</atitle><jtitle>The Astrophysical journal</jtitle><date>2014-07-10</date><risdate>2014</risdate><volume>789</volume><issue>2</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.</abstract><cop>United States</cop><doi>10.1088/0004-637X/789/2/137</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2014-07, Vol.789 (2), p.1-20 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22365673 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | ACCELERATION ALFVEN WAVES AMPLIFICATION ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Computational fluid dynamics COMPUTERIZED SIMULATION COSMIC RADIATION DENSITY DIFFUSION FLUCTUATIONS Fluid flow INSTABILITY MAGNETIC FIELDS MAGNETOHYDRODYNAMICS Mathematical models MONTE CARLO METHOD PROTON TEMPERATURE SCALE MODELS SCATTERING SHOCK WAVES SPECTRA SUPERNOVA REMNANTS TURBULENCE Turbulent flow VELOCITY |
title | MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAGNETIC%20FIELD%20AMPLIFICATION%20IN%20NONLINEAR%20DIFFUSIVE%20SHOCK%20ACCELERATION%20INCLUDING%20RESONANT%20AND%20NON-RESONANT%20COSMIC-RAY%20DRIVEN%20INSTABILITIES&rft.jtitle=The%20Astrophysical%20journal&rft.au=Bykov,%20Andrei%20M&rft.date=2014-07-10&rft.volume=789&rft.issue=2&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/789/2/137&rft_dat=%3Cproquest_osti_%3E1718968433%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709164537&rft_id=info:pmid/&rfr_iscdi=true |