MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES

We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-curren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2014-07, Vol.789 (2), p.1-20
Hauptverfasser: Bykov, Andrei M, Ellison, Donald C, Osipov, Sergei M, Vladimirov, Andrey E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 2
container_start_page 1
container_title The Astrophysical journal
container_volume 789
creator Bykov, Andrei M
Ellison, Donald C
Osipov, Sergei M
Vladimirov, Andrey E
description We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.
doi_str_mv 10.1088/0004-637X/789/2/137
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22365673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718968433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5c2e8ee0d2c0d2337dec43a9b8578b1e5eddb9280ad845660cf42e929c0e6cb33</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EEkvpE3CxxIVLWMdOYvtoHGdrNetUSRbByco6XrFouylxeugr9KmbaKFnDqPRjL5_NNIHwKcYfY0RY2uEUBJlhP5YU8bXeB0T-gas4pSwKCEpfQtWr8R78CGE38uIOV-B563YGNVqCQutyhyK7V2pCy1FqysDtYGmMqU2StQw10Wxa_R3BZubSt5CIaUqVf2PlOUu12YDa9VURpgWCpMv6eh1Iatmq2VUi58wr-c7S6ppxTdd6lar5iN4d-hOwV__7VdgV6hW3kRltZkfKiNHGJui1GHPvEc9dnMRQnvvEtLxPUsp28c-9X2_55ihrmdJmmXIHRLsOeYO-cztCbkCny93hzAdbXDHybtfbjifvZssxiRLM7pQXy7Uwzj8efRhsvfH4Pzp1J398BhsTGPGM5aQ_0ERj7MkJXRGyQV14xDC6A_2YTzed-OTjZFdVNrFjF1E2VmlxXZWSV4AcFqGAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709164537</pqid></control><display><type>article</type><title>MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bykov, Andrei M ; Ellison, Donald C ; Osipov, Sergei M ; Vladimirov, Andrey E</creator><creatorcontrib>Bykov, Andrei M ; Ellison, Donald C ; Osipov, Sergei M ; Vladimirov, Andrey E</creatorcontrib><description>We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/789/2/137</identifier><language>eng</language><publisher>United States</publisher><subject>ACCELERATION ; ALFVEN WAVES ; AMPLIFICATION ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Computational fluid dynamics ; COMPUTERIZED SIMULATION ; COSMIC RADIATION ; DENSITY ; DIFFUSION ; FLUCTUATIONS ; Fluid flow ; INSTABILITY ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; Mathematical models ; MONTE CARLO METHOD ; PROTON TEMPERATURE ; SCALE MODELS ; SCATTERING ; SHOCK WAVES ; SPECTRA ; SUPERNOVA REMNANTS ; TURBULENCE ; Turbulent flow ; VELOCITY</subject><ispartof>The Astrophysical journal, 2014-07, Vol.789 (2), p.1-20</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5c2e8ee0d2c0d2337dec43a9b8578b1e5eddb9280ad845660cf42e929c0e6cb33</citedby><cites>FETCH-LOGICAL-c388t-5c2e8ee0d2c0d2337dec43a9b8578b1e5eddb9280ad845660cf42e929c0e6cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22365673$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bykov, Andrei M</creatorcontrib><creatorcontrib>Ellison, Donald C</creatorcontrib><creatorcontrib>Osipov, Sergei M</creatorcontrib><creatorcontrib>Vladimirov, Andrey E</creatorcontrib><title>MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES</title><title>The Astrophysical journal</title><description>We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.</description><subject>ACCELERATION</subject><subject>ALFVEN WAVES</subject><subject>AMPLIFICATION</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Computational fluid dynamics</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COSMIC RADIATION</subject><subject>DENSITY</subject><subject>DIFFUSION</subject><subject>FLUCTUATIONS</subject><subject>Fluid flow</subject><subject>INSTABILITY</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>Mathematical models</subject><subject>MONTE CARLO METHOD</subject><subject>PROTON TEMPERATURE</subject><subject>SCALE MODELS</subject><subject>SCATTERING</subject><subject>SHOCK WAVES</subject><subject>SPECTRA</subject><subject>SUPERNOVA REMNANTS</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><subject>VELOCITY</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi0EEkvpE3CxxIVLWMdOYvtoHGdrNetUSRbByco6XrFouylxeugr9KmbaKFnDqPRjL5_NNIHwKcYfY0RY2uEUBJlhP5YU8bXeB0T-gas4pSwKCEpfQtWr8R78CGE38uIOV-B563YGNVqCQutyhyK7V2pCy1FqysDtYGmMqU2StQw10Wxa_R3BZubSt5CIaUqVf2PlOUu12YDa9VURpgWCpMv6eh1Iatmq2VUi58wr-c7S6ppxTdd6lar5iN4d-hOwV__7VdgV6hW3kRltZkfKiNHGJui1GHPvEc9dnMRQnvvEtLxPUsp28c-9X2_55ihrmdJmmXIHRLsOeYO-cztCbkCny93hzAdbXDHybtfbjifvZssxiRLM7pQXy7Uwzj8efRhsvfH4Pzp1J398BhsTGPGM5aQ_0ERj7MkJXRGyQV14xDC6A_2YTzed-OTjZFdVNrFjF1E2VmlxXZWSV4AcFqGAA</recordid><startdate>20140710</startdate><enddate>20140710</enddate><creator>Bykov, Andrei M</creator><creator>Ellison, Donald C</creator><creator>Osipov, Sergei M</creator><creator>Vladimirov, Andrey E</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140710</creationdate><title>MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES</title><author>Bykov, Andrei M ; Ellison, Donald C ; Osipov, Sergei M ; Vladimirov, Andrey E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5c2e8ee0d2c0d2337dec43a9b8578b1e5eddb9280ad845660cf42e929c0e6cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ACCELERATION</topic><topic>ALFVEN WAVES</topic><topic>AMPLIFICATION</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Computational fluid dynamics</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COSMIC RADIATION</topic><topic>DENSITY</topic><topic>DIFFUSION</topic><topic>FLUCTUATIONS</topic><topic>Fluid flow</topic><topic>INSTABILITY</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>Mathematical models</topic><topic>MONTE CARLO METHOD</topic><topic>PROTON TEMPERATURE</topic><topic>SCALE MODELS</topic><topic>SCATTERING</topic><topic>SHOCK WAVES</topic><topic>SPECTRA</topic><topic>SUPERNOVA REMNANTS</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bykov, Andrei M</creatorcontrib><creatorcontrib>Ellison, Donald C</creatorcontrib><creatorcontrib>Osipov, Sergei M</creatorcontrib><creatorcontrib>Vladimirov, Andrey E</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bykov, Andrei M</au><au>Ellison, Donald C</au><au>Osipov, Sergei M</au><au>Vladimirov, Andrey E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES</atitle><jtitle>The Astrophysical journal</jtitle><date>2014-07-10</date><risdate>2014</risdate><volume>789</volume><issue>2</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.</abstract><cop>United States</cop><doi>10.1088/0004-637X/789/2/137</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2014-07, Vol.789 (2), p.1-20
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22365673
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects ACCELERATION
ALFVEN WAVES
AMPLIFICATION
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Computational fluid dynamics
COMPUTERIZED SIMULATION
COSMIC RADIATION
DENSITY
DIFFUSION
FLUCTUATIONS
Fluid flow
INSTABILITY
MAGNETIC FIELDS
MAGNETOHYDRODYNAMICS
Mathematical models
MONTE CARLO METHOD
PROTON TEMPERATURE
SCALE MODELS
SCATTERING
SHOCK WAVES
SPECTRA
SUPERNOVA REMNANTS
TURBULENCE
Turbulent flow
VELOCITY
title MAGNETIC FIELD AMPLIFICATION IN NONLINEAR DIFFUSIVE SHOCK ACCELERATION INCLUDING RESONANT AND NON-RESONANT COSMIC-RAY DRIVEN INSTABILITIES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAGNETIC%20FIELD%20AMPLIFICATION%20IN%20NONLINEAR%20DIFFUSIVE%20SHOCK%20ACCELERATION%20INCLUDING%20RESONANT%20AND%20NON-RESONANT%20COSMIC-RAY%20DRIVEN%20INSTABILITIES&rft.jtitle=The%20Astrophysical%20journal&rft.au=Bykov,%20Andrei%20M&rft.date=2014-07-10&rft.volume=789&rft.issue=2&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/789/2/137&rft_dat=%3Cproquest_osti_%3E1718968433%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709164537&rft_id=info:pmid/&rfr_iscdi=true