FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY

Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydro-dynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2015-01, Vol.799 (1), p.1-16
Hauptverfasser: Ni, Lei, Kliem, Bernhard, Lin, Jun, Wu, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 799
creator Ni, Lei
Kliem, Bernhard
Lin, Jun
Wu, Ning
description Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydro-dynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ~10 super(6)-10 super(7) in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfven velocity in the inflow region, reaches values in the range ~0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches [approximate]40 km s super(-1). Slow-mode shocks extend from the X-points, heating the plasmoids up to ~8 x 10 super(4) K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ~30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.
doi_str_mv 10.1088/0004-637X/799/1/79
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22364463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753502084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-698f231eadcafb50bd9b48e0d256022875367e7802d277b5d301ad46fe66c4dc3</originalsourceid><addsrcrecordid>eNqNkU1Pg0AQhonRxFr9A55IvHjB7jdwpHRbSPhoABN72sCyRExbKksP_nvBevDo5Z05PDOTzGMYjxC8QOA4CwAAsRi23xa26y7gmFfGDFLsWART-_pPf2vcaf0x8ch1Z8Zu7eWFGXubhBehb2bcT5OE-0WYJmaYmEXAzTyNvMz0gyyN03wb8IybMV-FXsFX5nL3g2wjL4_TcDWO5IW3DKOw2N0bN0251-rht86N1zUv_MCK0k3oe5ElKQCDxVynQRiqspZlU1FQ1W5FHAVqRBlAyLEpZrayHYBqZNsVrTGAZU1YoxiTpJZ4bjxd9nZ6aIWW7aDku-yORyUHgRBmhDA8Us8X6tR3n2elB3FotVT7fXlU3VkLON6hAAGH_ANFCDJKEBhRdEFl32ndq0ac-vZQ9l8CAjGJEdOjxSRGjGIEHBN_A2-wdyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722165420</pqid></control><display><type>article</type><title>FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ni, Lei ; Kliem, Bernhard ; Lin, Jun ; Wu, Ning</creator><creatorcontrib>Ni, Lei ; Kliem, Bernhard ; Lin, Jun ; Wu, Ning</creatorcontrib><description>Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydro-dynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ~10 super(6)-10 super(7) in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfven velocity in the inflow region, reaches values in the range ~0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches [approximate]40 km s super(-1). Slow-mode shocks extend from the X-points, heating the plasmoids up to ~8 x 10 super(4) K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ~30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.</description><identifier>ISSN: 1538-4357</identifier><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/799/1/79</identifier><language>eng</language><publisher>United States</publisher><subject>AMBIPOLAR DIFFUSION ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; ASYMPTOTIC SOLUTIONS ; CHROMOSPHERE ; COMPUTERIZED SIMULATION ; Cooling ; Current sheets ; Instability ; JETS ; MAGNETIC FIELDS ; MAGNETIC RECONNECTION ; MAGNETIC REYNOLDS NUMBER ; MAGNETOHYDRODYNAMICS ; Outflow ; PLASMOIDS ; RADIATIVE COOLING ; Simulation ; Stability ; SUN</subject><ispartof>The Astrophysical journal, 2015-01, Vol.799 (1), p.1-16</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-698f231eadcafb50bd9b48e0d256022875367e7802d277b5d301ad46fe66c4dc3</citedby><cites>FETCH-LOGICAL-c500t-698f231eadcafb50bd9b48e0d256022875367e7802d277b5d301ad46fe66c4dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22364463$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Kliem, Bernhard</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><creatorcontrib>Wu, Ning</creatorcontrib><title>FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY</title><title>The Astrophysical journal</title><description>Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydro-dynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ~10 super(6)-10 super(7) in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfven velocity in the inflow region, reaches values in the range ~0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches [approximate]40 km s super(-1). Slow-mode shocks extend from the X-points, heating the plasmoids up to ~8 x 10 super(4) K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ~30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.</description><subject>AMBIPOLAR DIFFUSION</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>CHROMOSPHERE</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Cooling</subject><subject>Current sheets</subject><subject>Instability</subject><subject>JETS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC RECONNECTION</subject><subject>MAGNETIC REYNOLDS NUMBER</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>Outflow</subject><subject>PLASMOIDS</subject><subject>RADIATIVE COOLING</subject><subject>Simulation</subject><subject>Stability</subject><subject>SUN</subject><issn>1538-4357</issn><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Pg0AQhonRxFr9A55IvHjB7jdwpHRbSPhoABN72sCyRExbKksP_nvBevDo5Z05PDOTzGMYjxC8QOA4CwAAsRi23xa26y7gmFfGDFLsWART-_pPf2vcaf0x8ch1Z8Zu7eWFGXubhBehb2bcT5OE-0WYJmaYmEXAzTyNvMz0gyyN03wb8IybMV-FXsFX5nL3g2wjL4_TcDWO5IW3DKOw2N0bN0251-rht86N1zUv_MCK0k3oe5ElKQCDxVynQRiqspZlU1FQ1W5FHAVqRBlAyLEpZrayHYBqZNsVrTGAZU1YoxiTpJZ4bjxd9nZ6aIWW7aDku-yORyUHgRBmhDA8Us8X6tR3n2elB3FotVT7fXlU3VkLON6hAAGH_ANFCDJKEBhRdEFl32ndq0ac-vZQ9l8CAjGJEdOjxSRGjGIEHBN_A2-wdyQ</recordid><startdate>20150120</startdate><enddate>20150120</enddate><creator>Ni, Lei</creator><creator>Kliem, Bernhard</creator><creator>Lin, Jun</creator><creator>Wu, Ning</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150120</creationdate><title>FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY</title><author>Ni, Lei ; Kliem, Bernhard ; Lin, Jun ; Wu, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-698f231eadcafb50bd9b48e0d256022875367e7802d277b5d301ad46fe66c4dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AMBIPOLAR DIFFUSION</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>CHROMOSPHERE</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Cooling</topic><topic>Current sheets</topic><topic>Instability</topic><topic>JETS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC RECONNECTION</topic><topic>MAGNETIC REYNOLDS NUMBER</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>Outflow</topic><topic>PLASMOIDS</topic><topic>RADIATIVE COOLING</topic><topic>Simulation</topic><topic>Stability</topic><topic>SUN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Kliem, Bernhard</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><creatorcontrib>Wu, Ning</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Lei</au><au>Kliem, Bernhard</au><au>Lin, Jun</au><au>Wu, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY</atitle><jtitle>The Astrophysical journal</jtitle><date>2015-01-20</date><risdate>2015</risdate><volume>799</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1538-4357</issn><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydro-dynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ~10 super(6)-10 super(7) in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfven velocity in the inflow region, reaches values in the range ~0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches [approximate]40 km s super(-1). Slow-mode shocks extend from the X-points, heating the plasmoids up to ~8 x 10 super(4) K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ~30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.</abstract><cop>United States</cop><doi>10.1088/0004-637X/799/1/79</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4357
ispartof The Astrophysical journal, 2015-01, Vol.799 (1), p.1-16
issn 1538-4357
0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22364463
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects AMBIPOLAR DIFFUSION
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
ASYMPTOTIC SOLUTIONS
CHROMOSPHERE
COMPUTERIZED SIMULATION
Cooling
Current sheets
Instability
JETS
MAGNETIC FIELDS
MAGNETIC RECONNECTION
MAGNETIC REYNOLDS NUMBER
MAGNETOHYDRODYNAMICS
Outflow
PLASMOIDS
RADIATIVE COOLING
Simulation
Stability
SUN
title FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAST%20MAGNETIC%20RECONNECTION%20IN%20THE%20SOLAR%20CHROMOSPHERE%20MEDIATED%20BY%20THE%20PLASMOID%20INSTABILITY&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ni,%20Lei&rft.date=2015-01-20&rft.volume=799&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1538-4357&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/799/1/79&rft_dat=%3Cproquest_osti_%3E1753502084%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722165420&rft_id=info:pmid/&rfr_iscdi=true