STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1

We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2015-02, Vol.800 (1), p.1-23
Hauptverfasser: Liao, Kai, Treu, Tommaso, Marshall, Phil, Fassnacht, Christopher D, Rumbaugh, Nick, Dobler, Gregory, Aghamousa, Amir, Bonvin, Vivien, Courbin, Frederic, Hojjati, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 800
creator Liao, Kai
Treu, Tommaso
Marshall, Phil
Fassnacht, Christopher D
Rumbaugh, Nick
Dobler, Gregory
Aghamousa, Amir
Bonvin, Vivien
Courbin, Frederic
Hojjati, Alireza
description We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (or bias) A, goodness of fit chi super(2), precision P, and success rate [functionof]. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and chi super(2) < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range [functionof] = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher [functionof] than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and |A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and [functionof] depend mostly on season length, while P depends mostly on cadence and campaign duration.
doi_str_mv 10.1088/0004-637X/800/1/11
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22364266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1768581179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-7ce7ca11aa5acc8c7243498a55aeaced87766683673669cec2d70da0362b30883</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwB5gssbCk8dmJ7YxVmn5IoZWaVILJMldXBLVNidOBf0-iMjAy3en03Cu9DyGPwEbAtA4ZY1EghXoNNWMhhABXZACx0EEkYnX9Z78ld95_9jxPkgGJi3K9Ws5oni0LWi5eMjrJ8vEbTefjvLvNshFdLEZ0nRWbvCzoakrLSQr35GZn9949_M4h2UyzMp0H-Wq2SMd5gCKCNlDoFFoAa2OLqFHxSESJtnFsnUW31UpJKbWQSkiZoEO-VWxrmZD8XXS1xJA8XXJr31bGY9U6_MD6eHTYGs6FjLiUHfV8oU5N_XV2vjWHyqPb7-3R1WdvQCWCSy4Y-wcqdayh_xgSfkGxqb1v3M6cmupgm28DzPTSTS_R9NJNJ92AARA_Z3ZskA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768581179</pqid></control><display><type>article</type><title>STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1</title><source>IOP Publishing</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Liao, Kai ; Treu, Tommaso ; Marshall, Phil ; Fassnacht, Christopher D ; Rumbaugh, Nick ; Dobler, Gregory ; Aghamousa, Amir ; Bonvin, Vivien ; Courbin, Frederic ; Hojjati, Alireza</creator><creatorcontrib>Liao, Kai ; Treu, Tommaso ; Marshall, Phil ; Fassnacht, Christopher D ; Rumbaugh, Nick ; Dobler, Gregory ; Aghamousa, Amir ; Bonvin, Vivien ; Courbin, Frederic ; Hojjati, Alireza</creatorcontrib><description>We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (or bias) A, goodness of fit chi super(2), precision P, and success rate [functionof]. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| &lt; 0.03, P &lt; 0.03, and chi super(2) &lt; 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range [functionof] = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher [functionof] than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P &lt; 0.03 and |A| &lt; 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and [functionof] depend mostly on season length, while P depends mostly on cadence and campaign duration.</description><identifier>ISSN: 1538-4357</identifier><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/800/1/11</identifier><language>eng</language><publisher>United States</publisher><subject>ACCURACY ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COMPARATIVE EVALUATIONS ; Computer simulation ; DATA ANALYSIS ; Design analysis ; DIAGRAMS ; GRAVITATIONAL LENSES ; Lenses ; Light curve ; Outliers (statistics) ; Sampling ; TIME DELAY ; VISIBLE RADIATION</subject><ispartof>The Astrophysical journal, 2015-02, Vol.800 (1), p.1-23</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-7ce7ca11aa5acc8c7243498a55aeaced87766683673669cec2d70da0362b30883</citedby><cites>FETCH-LOGICAL-c341t-7ce7ca11aa5acc8c7243498a55aeaced87766683673669cec2d70da0362b30883</cites><orcidid>0000-0002-8460-0390 ; 0000-0001-6815-0337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22364266$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Kai</creatorcontrib><creatorcontrib>Treu, Tommaso</creatorcontrib><creatorcontrib>Marshall, Phil</creatorcontrib><creatorcontrib>Fassnacht, Christopher D</creatorcontrib><creatorcontrib>Rumbaugh, Nick</creatorcontrib><creatorcontrib>Dobler, Gregory</creatorcontrib><creatorcontrib>Aghamousa, Amir</creatorcontrib><creatorcontrib>Bonvin, Vivien</creatorcontrib><creatorcontrib>Courbin, Frederic</creatorcontrib><creatorcontrib>Hojjati, Alireza</creatorcontrib><title>STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1</title><title>The Astrophysical journal</title><description>We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (or bias) A, goodness of fit chi super(2), precision P, and success rate [functionof]. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| &lt; 0.03, P &lt; 0.03, and chi super(2) &lt; 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range [functionof] = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher [functionof] than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P &lt; 0.03 and |A| &lt; 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and [functionof] depend mostly on season length, while P depends mostly on cadence and campaign duration.</description><subject>ACCURACY</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computer simulation</subject><subject>DATA ANALYSIS</subject><subject>Design analysis</subject><subject>DIAGRAMS</subject><subject>GRAVITATIONAL LENSES</subject><subject>Lenses</subject><subject>Light curve</subject><subject>Outliers (statistics)</subject><subject>Sampling</subject><subject>TIME DELAY</subject><subject>VISIBLE RADIATION</subject><issn>1538-4357</issn><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwB5gssbCk8dmJ7YxVmn5IoZWaVILJMldXBLVNidOBf0-iMjAy3en03Cu9DyGPwEbAtA4ZY1EghXoNNWMhhABXZACx0EEkYnX9Z78ld95_9jxPkgGJi3K9Ws5oni0LWi5eMjrJ8vEbTefjvLvNshFdLEZ0nRWbvCzoakrLSQr35GZn9949_M4h2UyzMp0H-Wq2SMd5gCKCNlDoFFoAa2OLqFHxSESJtnFsnUW31UpJKbWQSkiZoEO-VWxrmZD8XXS1xJA8XXJr31bGY9U6_MD6eHTYGs6FjLiUHfV8oU5N_XV2vjWHyqPb7-3R1WdvQCWCSy4Y-wcqdayh_xgSfkGxqb1v3M6cmupgm28DzPTSTS_R9NJNJ92AARA_Z3ZskA</recordid><startdate>20150210</startdate><enddate>20150210</enddate><creator>Liao, Kai</creator><creator>Treu, Tommaso</creator><creator>Marshall, Phil</creator><creator>Fassnacht, Christopher D</creator><creator>Rumbaugh, Nick</creator><creator>Dobler, Gregory</creator><creator>Aghamousa, Amir</creator><creator>Bonvin, Vivien</creator><creator>Courbin, Frederic</creator><creator>Hojjati, Alireza</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8460-0390</orcidid><orcidid>https://orcid.org/0000-0001-6815-0337</orcidid></search><sort><creationdate>20150210</creationdate><title>STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1</title><author>Liao, Kai ; Treu, Tommaso ; Marshall, Phil ; Fassnacht, Christopher D ; Rumbaugh, Nick ; Dobler, Gregory ; Aghamousa, Amir ; Bonvin, Vivien ; Courbin, Frederic ; Hojjati, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-7ce7ca11aa5acc8c7243498a55aeaced87766683673669cec2d70da0362b30883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ACCURACY</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computer simulation</topic><topic>DATA ANALYSIS</topic><topic>Design analysis</topic><topic>DIAGRAMS</topic><topic>GRAVITATIONAL LENSES</topic><topic>Lenses</topic><topic>Light curve</topic><topic>Outliers (statistics)</topic><topic>Sampling</topic><topic>TIME DELAY</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Kai</creatorcontrib><creatorcontrib>Treu, Tommaso</creatorcontrib><creatorcontrib>Marshall, Phil</creatorcontrib><creatorcontrib>Fassnacht, Christopher D</creatorcontrib><creatorcontrib>Rumbaugh, Nick</creatorcontrib><creatorcontrib>Dobler, Gregory</creatorcontrib><creatorcontrib>Aghamousa, Amir</creatorcontrib><creatorcontrib>Bonvin, Vivien</creatorcontrib><creatorcontrib>Courbin, Frederic</creatorcontrib><creatorcontrib>Hojjati, Alireza</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Kai</au><au>Treu, Tommaso</au><au>Marshall, Phil</au><au>Fassnacht, Christopher D</au><au>Rumbaugh, Nick</au><au>Dobler, Gregory</au><au>Aghamousa, Amir</au><au>Bonvin, Vivien</au><au>Courbin, Frederic</au><au>Hojjati, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1</atitle><jtitle>The Astrophysical journal</jtitle><date>2015-02-10</date><risdate>2015</risdate><volume>800</volume><issue>1</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>1538-4357</issn><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (or bias) A, goodness of fit chi super(2), precision P, and success rate [functionof]. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| &lt; 0.03, P &lt; 0.03, and chi super(2) &lt; 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range [functionof] = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher [functionof] than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P &lt; 0.03 and |A| &lt; 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and [functionof] depend mostly on season length, while P depends mostly on cadence and campaign duration.</abstract><cop>United States</cop><doi>10.1088/0004-637X/800/1/11</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8460-0390</orcidid><orcidid>https://orcid.org/0000-0001-6815-0337</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1538-4357
ispartof The Astrophysical journal, 2015-02, Vol.800 (1), p.1-23
issn 1538-4357
0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22364266
source IOP Publishing; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects ACCURACY
ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COMPARATIVE EVALUATIONS
Computer simulation
DATA ANALYSIS
Design analysis
DIAGRAMS
GRAVITATIONAL LENSES
Lenses
Light curve
Outliers (statistics)
Sampling
TIME DELAY
VISIBLE RADIATION
title STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STRONG%20LENS%20TIME%20DELAY%20CHALLENGE.%20II.%20RESULTS%20OF%20TDC1&rft.jtitle=The%20Astrophysical%20journal&rft.au=Liao,%20Kai&rft.date=2015-02-10&rft.volume=800&rft.issue=1&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=1538-4357&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/800/1/11&rft_dat=%3Cproquest_osti_%3E1768581179%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768581179&rft_id=info:pmid/&rfr_iscdi=true