Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion to Measure Complex Impedance

In this paper, we present a method for estimating complex impedances using reflectometry and a modified steepest descent inversion algorithm. We simulate spread spectrum time domain reflectometry (SSTDR), which can measure complex impedances on energized systems for an experimental setup with resist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Computational Electromagnetics Society journal 2021-03, Vol.36 (2)
Hauptverfasser: Kingston, Samuel R., Ellis, Hunter, Saleh, Mashad U., Benoit, Evan J., Edun, Ayobami, Furse, Cynthia M., Scarpulla, Michael A., Harley, Joel B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Applied Computational Electromagnetics Society journal
container_volume 36
creator Kingston, Samuel R.
Ellis, Hunter
Saleh, Mashad U.
Benoit, Evan J.
Edun, Ayobami
Furse, Cynthia M.
Scarpulla, Michael A.
Harley, Joel B.
description In this paper, we present a method for estimating complex impedances using reflectometry and a modified steepest descent inversion algorithm. We simulate spread spectrum time domain reflectometry (SSTDR), which can measure complex impedances on energized systems for an experimental setup with resistive and capacitive loads. A parametric function, which includes both a misfit function and stabilizer function, is created. The misfit function is a least squares estimate of how close the model data matches observed data. The stabilizer function prevents the steepest descent algorithm from becoming unstable and diverging. Steepest descent iteratively identifies the model parameters that minimize the parametric function. We validate the algorithm by correctly identifying the model parameters (capacitance and resistance) associated with simulated SSTDR data, with added 3 dB white Gaussian noise. With the stabilizer function, the steepest descent algorithm estimates of the model parameters are bounded within a specified range. Furthermore, the errors for capacitance (220pF to 820pF) and resistance (50 Ω to 270 Ω) are < 10%, corresponding to a complex impedance magnitude |R +1/jωC| of 53 Ω to 510 Ω.
doi_str_mv 10.47037/2020.ACES.J.360211
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2234306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234306</sourcerecordid><originalsourceid>FETCH-LOGICAL-o182t-3f41fedbb2620d4dd35b1b3e7953ba554a70b769a0db9026b5dcae29cda84a883</originalsourceid><addsrcrecordid>eNotj11LwzAYhYMoOKe_wJvgfWs-m_RydFMnE8HO65GPt1hZk9Jkov_egl6dw8PhgYPQLSWlUISre0YYKVfNpi2fS14RRukZWtBa8EIqSs_nTqQohNbqEl2l9EkI11xVCwTtOIHxuB3B5ek04H0_AF7HwfQBv0F3nHEcIE8_2IR5lgFGSBmvITkIGW_DF0ypjwHniF_ApNMEuInDeIRvvB1G8CY4uEYXnTkmuPnPJXp_2Oybp2L3-rhtVrsiUs1ywTtBO_DWsooRL7zn0lLLQdWSWyOlMIpYVdWGeFsTVlnpnQFWO2-0MFrzJbr788aU-0NyfQb34WII84sDY1xwUvFfg15aVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion to Measure Complex Impedance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Kingston, Samuel R. ; Ellis, Hunter ; Saleh, Mashad U. ; Benoit, Evan J. ; Edun, Ayobami ; Furse, Cynthia M. ; Scarpulla, Michael A. ; Harley, Joel B.</creator><creatorcontrib>Kingston, Samuel R. ; Ellis, Hunter ; Saleh, Mashad U. ; Benoit, Evan J. ; Edun, Ayobami ; Furse, Cynthia M. ; Scarpulla, Michael A. ; Harley, Joel B. ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>In this paper, we present a method for estimating complex impedances using reflectometry and a modified steepest descent inversion algorithm. We simulate spread spectrum time domain reflectometry (SSTDR), which can measure complex impedances on energized systems for an experimental setup with resistive and capacitive loads. A parametric function, which includes both a misfit function and stabilizer function, is created. The misfit function is a least squares estimate of how close the model data matches observed data. The stabilizer function prevents the steepest descent algorithm from becoming unstable and diverging. Steepest descent iteratively identifies the model parameters that minimize the parametric function. We validate the algorithm by correctly identifying the model parameters (capacitance and resistance) associated with simulated SSTDR data, with added 3 dB white Gaussian noise. With the stabilizer function, the steepest descent algorithm estimates of the model parameters are bounded within a specified range. Furthermore, the errors for capacitance (220pF to 820pF) and resistance (50 Ω to 270 Ω) are &lt; 10%, corresponding to a complex impedance magnitude |R +1/jωC| of 53 Ω to 510 Ω.</description><identifier>ISSN: 1054-4887</identifier><identifier>EISSN: 1943-5711</identifier><identifier>DOI: 10.47037/2020.ACES.J.360211</identifier><language>eng</language><publisher>United States: Applied Computational Electromagnetics Society</publisher><subject>SOLAR ENERGY</subject><ispartof>Applied Computational Electromagnetics Society journal, 2021-03, Vol.36 (2)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2234306$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kingston, Samuel R.</creatorcontrib><creatorcontrib>Ellis, Hunter</creatorcontrib><creatorcontrib>Saleh, Mashad U.</creatorcontrib><creatorcontrib>Benoit, Evan J.</creatorcontrib><creatorcontrib>Edun, Ayobami</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion to Measure Complex Impedance</title><title>Applied Computational Electromagnetics Society journal</title><description>In this paper, we present a method for estimating complex impedances using reflectometry and a modified steepest descent inversion algorithm. We simulate spread spectrum time domain reflectometry (SSTDR), which can measure complex impedances on energized systems for an experimental setup with resistive and capacitive loads. A parametric function, which includes both a misfit function and stabilizer function, is created. The misfit function is a least squares estimate of how close the model data matches observed data. The stabilizer function prevents the steepest descent algorithm from becoming unstable and diverging. Steepest descent iteratively identifies the model parameters that minimize the parametric function. We validate the algorithm by correctly identifying the model parameters (capacitance and resistance) associated with simulated SSTDR data, with added 3 dB white Gaussian noise. With the stabilizer function, the steepest descent algorithm estimates of the model parameters are bounded within a specified range. Furthermore, the errors for capacitance (220pF to 820pF) and resistance (50 Ω to 270 Ω) are &lt; 10%, corresponding to a complex impedance magnitude |R +1/jωC| of 53 Ω to 510 Ω.</description><subject>SOLAR ENERGY</subject><issn>1054-4887</issn><issn>1943-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotj11LwzAYhYMoOKe_wJvgfWs-m_RydFMnE8HO65GPt1hZk9Jkov_egl6dw8PhgYPQLSWlUISre0YYKVfNpi2fS14RRukZWtBa8EIqSs_nTqQohNbqEl2l9EkI11xVCwTtOIHxuB3B5ek04H0_AF7HwfQBv0F3nHEcIE8_2IR5lgFGSBmvITkIGW_DF0ypjwHniF_ApNMEuInDeIRvvB1G8CY4uEYXnTkmuPnPJXp_2Oybp2L3-rhtVrsiUs1ywTtBO_DWsooRL7zn0lLLQdWSWyOlMIpYVdWGeFsTVlnpnQFWO2-0MFrzJbr788aU-0NyfQb34WII84sDY1xwUvFfg15aVQ</recordid><startdate>20210316</startdate><enddate>20210316</enddate><creator>Kingston, Samuel R.</creator><creator>Ellis, Hunter</creator><creator>Saleh, Mashad U.</creator><creator>Benoit, Evan J.</creator><creator>Edun, Ayobami</creator><creator>Furse, Cynthia M.</creator><creator>Scarpulla, Michael A.</creator><creator>Harley, Joel B.</creator><general>Applied Computational Electromagnetics Society</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20210316</creationdate><title>Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion to Measure Complex Impedance</title><author>Kingston, Samuel R. ; Ellis, Hunter ; Saleh, Mashad U. ; Benoit, Evan J. ; Edun, Ayobami ; Furse, Cynthia M. ; Scarpulla, Michael A. ; Harley, Joel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o182t-3f41fedbb2620d4dd35b1b3e7953ba554a70b769a0db9026b5dcae29cda84a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>SOLAR ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>Kingston, Samuel R.</creatorcontrib><creatorcontrib>Ellis, Hunter</creatorcontrib><creatorcontrib>Saleh, Mashad U.</creatorcontrib><creatorcontrib>Benoit, Evan J.</creatorcontrib><creatorcontrib>Edun, Ayobami</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied Computational Electromagnetics Society journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingston, Samuel R.</au><au>Ellis, Hunter</au><au>Saleh, Mashad U.</au><au>Benoit, Evan J.</au><au>Edun, Ayobami</au><au>Furse, Cynthia M.</au><au>Scarpulla, Michael A.</au><au>Harley, Joel B.</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion to Measure Complex Impedance</atitle><jtitle>Applied Computational Electromagnetics Society journal</jtitle><date>2021-03-16</date><risdate>2021</risdate><volume>36</volume><issue>2</issue><issn>1054-4887</issn><eissn>1943-5711</eissn><abstract>In this paper, we present a method for estimating complex impedances using reflectometry and a modified steepest descent inversion algorithm. We simulate spread spectrum time domain reflectometry (SSTDR), which can measure complex impedances on energized systems for an experimental setup with resistive and capacitive loads. A parametric function, which includes both a misfit function and stabilizer function, is created. The misfit function is a least squares estimate of how close the model data matches observed data. The stabilizer function prevents the steepest descent algorithm from becoming unstable and diverging. Steepest descent iteratively identifies the model parameters that minimize the parametric function. We validate the algorithm by correctly identifying the model parameters (capacitance and resistance) associated with simulated SSTDR data, with added 3 dB white Gaussian noise. With the stabilizer function, the steepest descent algorithm estimates of the model parameters are bounded within a specified range. Furthermore, the errors for capacitance (220pF to 820pF) and resistance (50 Ω to 270 Ω) are &lt; 10%, corresponding to a complex impedance magnitude |R +1/jωC| of 53 Ω to 510 Ω.</abstract><cop>United States</cop><pub>Applied Computational Electromagnetics Society</pub><doi>10.47037/2020.ACES.J.360211</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-4887
ispartof Applied Computational Electromagnetics Society journal, 2021-03, Vol.36 (2)
issn 1054-4887
1943-5711
language eng
recordid cdi_osti_scitechconnect_2234306
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects SOLAR ENERGY
title Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion to Measure Complex Impedance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spread%20Spectrum%20Time%20Domain%20Reflectometry%20and%20Steepest%20Descent%20Inversion%20to%20Measure%20Complex%20Impedance&rft.jtitle=Applied%20Computational%20Electromagnetics%20Society%20journal&rft.au=Kingston,%20Samuel%20R.&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2021-03-16&rft.volume=36&rft.issue=2&rft.issn=1054-4887&rft.eissn=1943-5711&rft_id=info:doi/10.47037/2020.ACES.J.360211&rft_dat=%3Costi%3E2234306%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true