A method of orbital analysis for large-scale first-principles simulations

An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-06, Vol.140 (24), p.244105-244105
Hauptverfasser: Ohwaki, Tsukuru, Otani, Minoru, Ozaki, Taisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244105
container_issue 24
container_start_page 244105
container_title The Journal of chemical physics
container_volume 140
creator Ohwaki, Tsukuru
Otani, Minoru
Ozaki, Taisuke
description An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).
doi_str_mv 10.1063/1.4884119
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22311383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1542651644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-dd0202d049201f841b9cebd59d5a76e2f9d95034d2f082b7f4cebc8f2824c89e3</originalsourceid><addsrcrecordid>eNpF0ctu1TAQBmALgeihsOAFUCQ2sEiZcRzHXlYVl0qV2MDacnyhrpz44HEWfXuCzqGsZjGffo3-YewtwhWCHD7hlVBKIOpn7ICgdD9JDc_ZAYBjryXIC_aK6AEAcOLiJbvgQqtRojyw2-tuCe2--K7ErtQ5NZs7u9r8SIm6WGqXbf0VenI2hy6mSq0_1rS6dMyBOkrLlm1LZaXX7EW0mcKb87xkP798_nHzrb_7_vX25vqud4PA1nsPHLgHoTlg3K-etQuzH7Uf7SQDj9rrEQbheQTF5ymKfe1U5IoLp3QYLtn7U26hlgy51IK7d2Vdg2uG8wFxUMOuPpzUsZbfW6BmlkQu5GzXUDYyOAouR5RC_A98og9lq3sFZDjuSHMN064-npSrhaiGaPYaFlsfDYL5-wWD5vyF3b47J27zEvyT_Ff78AfDKX-y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126592907</pqid></control><display><type>article</type><title>A method of orbital analysis for large-scale first-principles simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ohwaki, Tsukuru ; Otani, Minoru ; Ozaki, Taisuke</creator><creatorcontrib>Ohwaki, Tsukuru ; Otani, Minoru ; Ozaki, Taisuke</creatorcontrib><description>An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4884119</identifier><identifier>PMID: 24985616</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>CARBONIC ACID ESTERS ; CHEMICAL BONDS ; CHEMICAL REACTIONS ; Computer simulation ; DENSITY FUNCTIONAL METHOD ; Density functional theory ; DENSITY MATRIX ; ELECTROLYTES ; ELECTRONIC STRUCTURE ; First principles ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LIQUIDS ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; Orbitals ; Organic chemistry ; Propylene ; Quantitative analysis ; SIMULATION</subject><ispartof>The Journal of chemical physics, 2014-06, Vol.140 (24), p.244105-244105</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-dd0202d049201f841b9cebd59d5a76e2f9d95034d2f082b7f4cebc8f2824c89e3</citedby><cites>FETCH-LOGICAL-c341t-dd0202d049201f841b9cebd59d5a76e2f9d95034d2f082b7f4cebc8f2824c89e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24985616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22311383$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohwaki, Tsukuru</creatorcontrib><creatorcontrib>Otani, Minoru</creatorcontrib><creatorcontrib>Ozaki, Taisuke</creatorcontrib><title>A method of orbital analysis for large-scale first-principles simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).</description><subject>CARBONIC ACID ESTERS</subject><subject>CHEMICAL BONDS</subject><subject>CHEMICAL REACTIONS</subject><subject>Computer simulation</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Density functional theory</subject><subject>DENSITY MATRIX</subject><subject>ELECTROLYTES</subject><subject>ELECTRONIC STRUCTURE</subject><subject>First principles</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LIQUIDS</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Orbitals</subject><subject>Organic chemistry</subject><subject>Propylene</subject><subject>Quantitative analysis</subject><subject>SIMULATION</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpF0ctu1TAQBmALgeihsOAFUCQ2sEiZcRzHXlYVl0qV2MDacnyhrpz44HEWfXuCzqGsZjGffo3-YewtwhWCHD7hlVBKIOpn7ICgdD9JDc_ZAYBjryXIC_aK6AEAcOLiJbvgQqtRojyw2-tuCe2--K7ErtQ5NZs7u9r8SIm6WGqXbf0VenI2hy6mSq0_1rS6dMyBOkrLlm1LZaXX7EW0mcKb87xkP798_nHzrb_7_vX25vqud4PA1nsPHLgHoTlg3K-etQuzH7Uf7SQDj9rrEQbheQTF5ymKfe1U5IoLp3QYLtn7U26hlgy51IK7d2Vdg2uG8wFxUMOuPpzUsZbfW6BmlkQu5GzXUDYyOAouR5RC_A98og9lq3sFZDjuSHMN064-npSrhaiGaPYaFlsfDYL5-wWD5vyF3b47J27zEvyT_Ff78AfDKX-y</recordid><startdate>20140628</startdate><enddate>20140628</enddate><creator>Ohwaki, Tsukuru</creator><creator>Otani, Minoru</creator><creator>Ozaki, Taisuke</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140628</creationdate><title>A method of orbital analysis for large-scale first-principles simulations</title><author>Ohwaki, Tsukuru ; Otani, Minoru ; Ozaki, Taisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-dd0202d049201f841b9cebd59d5a76e2f9d95034d2f082b7f4cebc8f2824c89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CARBONIC ACID ESTERS</topic><topic>CHEMICAL BONDS</topic><topic>CHEMICAL REACTIONS</topic><topic>Computer simulation</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Density functional theory</topic><topic>DENSITY MATRIX</topic><topic>ELECTROLYTES</topic><topic>ELECTRONIC STRUCTURE</topic><topic>First principles</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LIQUIDS</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Orbitals</topic><topic>Organic chemistry</topic><topic>Propylene</topic><topic>Quantitative analysis</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohwaki, Tsukuru</creatorcontrib><creatorcontrib>Otani, Minoru</creatorcontrib><creatorcontrib>Ozaki, Taisuke</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohwaki, Tsukuru</au><au>Otani, Minoru</au><au>Ozaki, Taisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method of orbital analysis for large-scale first-principles simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-06-28</date><risdate>2014</risdate><volume>140</volume><issue>24</issue><spage>244105</spage><epage>244105</epage><pages>244105-244105</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24985616</pmid><doi>10.1063/1.4884119</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-06, Vol.140 (24), p.244105-244105
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22311383
source AIP Journals Complete; Alma/SFX Local Collection
subjects CARBONIC ACID ESTERS
CHEMICAL BONDS
CHEMICAL REACTIONS
Computer simulation
DENSITY FUNCTIONAL METHOD
Density functional theory
DENSITY MATRIX
ELECTROLYTES
ELECTRONIC STRUCTURE
First principles
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
LIQUIDS
Molecular dynamics
MOLECULAR DYNAMICS METHOD
Orbitals
Organic chemistry
Propylene
Quantitative analysis
SIMULATION
title A method of orbital analysis for large-scale first-principles simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20of%20orbital%20analysis%20for%20large-scale%20first-principles%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ohwaki,%20Tsukuru&rft.date=2014-06-28&rft.volume=140&rft.issue=24&rft.spage=244105&rft.epage=244105&rft.pages=244105-244105&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4884119&rft_dat=%3Cproquest_osti_%3E1542651644%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126592907&rft_id=info:pmid/24985616&rfr_iscdi=true