A method of orbital analysis for large-scale first-principles simulations
An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly ev...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-06, Vol.140 (24), p.244105-244105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244105 |
---|---|
container_issue | 24 |
container_start_page | 244105 |
container_title | The Journal of chemical physics |
container_volume | 140 |
creator | Ohwaki, Tsukuru Otani, Minoru Ozaki, Taisuke |
description | An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4). |
doi_str_mv | 10.1063/1.4884119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22311383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1542651644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-dd0202d049201f841b9cebd59d5a76e2f9d95034d2f082b7f4cebc8f2824c89e3</originalsourceid><addsrcrecordid>eNpF0ctu1TAQBmALgeihsOAFUCQ2sEiZcRzHXlYVl0qV2MDacnyhrpz44HEWfXuCzqGsZjGffo3-YewtwhWCHD7hlVBKIOpn7ICgdD9JDc_ZAYBjryXIC_aK6AEAcOLiJbvgQqtRojyw2-tuCe2--K7ErtQ5NZs7u9r8SIm6WGqXbf0VenI2hy6mSq0_1rS6dMyBOkrLlm1LZaXX7EW0mcKb87xkP798_nHzrb_7_vX25vqud4PA1nsPHLgHoTlg3K-etQuzH7Uf7SQDj9rrEQbheQTF5ymKfe1U5IoLp3QYLtn7U26hlgy51IK7d2Vdg2uG8wFxUMOuPpzUsZbfW6BmlkQu5GzXUDYyOAouR5RC_A98og9lq3sFZDjuSHMN064-npSrhaiGaPYaFlsfDYL5-wWD5vyF3b47J27zEvyT_Ff78AfDKX-y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126592907</pqid></control><display><type>article</type><title>A method of orbital analysis for large-scale first-principles simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ohwaki, Tsukuru ; Otani, Minoru ; Ozaki, Taisuke</creator><creatorcontrib>Ohwaki, Tsukuru ; Otani, Minoru ; Ozaki, Taisuke</creatorcontrib><description>An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4884119</identifier><identifier>PMID: 24985616</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>CARBONIC ACID ESTERS ; CHEMICAL BONDS ; CHEMICAL REACTIONS ; Computer simulation ; DENSITY FUNCTIONAL METHOD ; Density functional theory ; DENSITY MATRIX ; ELECTROLYTES ; ELECTRONIC STRUCTURE ; First principles ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LIQUIDS ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; Orbitals ; Organic chemistry ; Propylene ; Quantitative analysis ; SIMULATION</subject><ispartof>The Journal of chemical physics, 2014-06, Vol.140 (24), p.244105-244105</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-dd0202d049201f841b9cebd59d5a76e2f9d95034d2f082b7f4cebc8f2824c89e3</citedby><cites>FETCH-LOGICAL-c341t-dd0202d049201f841b9cebd59d5a76e2f9d95034d2f082b7f4cebc8f2824c89e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24985616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22311383$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohwaki, Tsukuru</creatorcontrib><creatorcontrib>Otani, Minoru</creatorcontrib><creatorcontrib>Ozaki, Taisuke</creatorcontrib><title>A method of orbital analysis for large-scale first-principles simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).</description><subject>CARBONIC ACID ESTERS</subject><subject>CHEMICAL BONDS</subject><subject>CHEMICAL REACTIONS</subject><subject>Computer simulation</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Density functional theory</subject><subject>DENSITY MATRIX</subject><subject>ELECTROLYTES</subject><subject>ELECTRONIC STRUCTURE</subject><subject>First principles</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LIQUIDS</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Orbitals</subject><subject>Organic chemistry</subject><subject>Propylene</subject><subject>Quantitative analysis</subject><subject>SIMULATION</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpF0ctu1TAQBmALgeihsOAFUCQ2sEiZcRzHXlYVl0qV2MDacnyhrpz44HEWfXuCzqGsZjGffo3-YewtwhWCHD7hlVBKIOpn7ICgdD9JDc_ZAYBjryXIC_aK6AEAcOLiJbvgQqtRojyw2-tuCe2--K7ErtQ5NZs7u9r8SIm6WGqXbf0VenI2hy6mSq0_1rS6dMyBOkrLlm1LZaXX7EW0mcKb87xkP798_nHzrb_7_vX25vqud4PA1nsPHLgHoTlg3K-etQuzH7Uf7SQDj9rrEQbheQTF5ymKfe1U5IoLp3QYLtn7U26hlgy51IK7d2Vdg2uG8wFxUMOuPpzUsZbfW6BmlkQu5GzXUDYyOAouR5RC_A98og9lq3sFZDjuSHMN064-npSrhaiGaPYaFlsfDYL5-wWD5vyF3b47J27zEvyT_Ff78AfDKX-y</recordid><startdate>20140628</startdate><enddate>20140628</enddate><creator>Ohwaki, Tsukuru</creator><creator>Otani, Minoru</creator><creator>Ozaki, Taisuke</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140628</creationdate><title>A method of orbital analysis for large-scale first-principles simulations</title><author>Ohwaki, Tsukuru ; Otani, Minoru ; Ozaki, Taisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-dd0202d049201f841b9cebd59d5a76e2f9d95034d2f082b7f4cebc8f2824c89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CARBONIC ACID ESTERS</topic><topic>CHEMICAL BONDS</topic><topic>CHEMICAL REACTIONS</topic><topic>Computer simulation</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Density functional theory</topic><topic>DENSITY MATRIX</topic><topic>ELECTROLYTES</topic><topic>ELECTRONIC STRUCTURE</topic><topic>First principles</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LIQUIDS</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Orbitals</topic><topic>Organic chemistry</topic><topic>Propylene</topic><topic>Quantitative analysis</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohwaki, Tsukuru</creatorcontrib><creatorcontrib>Otani, Minoru</creatorcontrib><creatorcontrib>Ozaki, Taisuke</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohwaki, Tsukuru</au><au>Otani, Minoru</au><au>Ozaki, Taisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method of orbital analysis for large-scale first-principles simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-06-28</date><risdate>2014</risdate><volume>140</volume><issue>24</issue><spage>244105</spage><epage>244105</epage><pages>244105-244105</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24985616</pmid><doi>10.1063/1.4884119</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2014-06, Vol.140 (24), p.244105-244105 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22311383 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | CARBONIC ACID ESTERS CHEMICAL BONDS CHEMICAL REACTIONS Computer simulation DENSITY FUNCTIONAL METHOD Density functional theory DENSITY MATRIX ELECTROLYTES ELECTRONIC STRUCTURE First principles INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY LIQUIDS Molecular dynamics MOLECULAR DYNAMICS METHOD Orbitals Organic chemistry Propylene Quantitative analysis SIMULATION |
title | A method of orbital analysis for large-scale first-principles simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20of%20orbital%20analysis%20for%20large-scale%20first-principles%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ohwaki,%20Tsukuru&rft.date=2014-06-28&rft.volume=140&rft.issue=24&rft.spage=244105&rft.epage=244105&rft.pages=244105-244105&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4884119&rft_dat=%3Cproquest_osti_%3E1542651644%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126592907&rft_id=info:pmid/24985616&rfr_iscdi=true |