Graphene field emission devices

Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-09, Vol.105 (10)
Hauptverfasser: Kumar, S., Duesberg, G. S., Pratap, R., Raghavan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Applied physics letters
container_volume 105
creator Kumar, S.
Duesberg, G. S.
Pratap, R.
Raghavan, S.
description Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.
doi_str_mv 10.1063/1.4895022
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22310847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126767801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-cfc656f0929818447386435bff440b331571085eaba527cff6769ac6af67ae573</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMouFYPfgILnjxszWTyb49StAoFL3oOaTqhKe3ummwFv70r7cHTvIHfezweY7fAZ8A1PsJM2kZxIc5YBdyYGgHsOas451jrRsEluyplO75KIFbsbpF9v6GWpjHRbj2lfSolde10Td8pULlmF9HvCt2c7oR9vjx_zF_r5fvibf60rAMqGOoQg1Y68kY0FqyUBq2WqFYxSslXiKAMcKvIr7wSJsSojW580H4UnpTBCbs_5nZlSK6ENFDYhK5tKQxOCBzd8h_V5-7rQGVw2-6Q27GYEyDGTGM5jNTDkQq5KyVTdH1Oe59_HHD3t5IDd1oJfwEniVWd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126767801</pqid></control><display><type>article</type><title>Graphene field emission devices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kumar, S. ; Duesberg, G. S. ; Pratap, R. ; Raghavan, S.</creator><creatorcontrib>Kumar, S. ; Duesberg, G. S. ; Pratap, R. ; Raghavan, S.</creatorcontrib><description>Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4895022</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CARBON NANOTUBES ; CURRENT DENSITY ; Dependence ; Devices ; ELECTRIC POTENTIAL ; FIELD EMISSION ; FORECASTING ; GRAPHENE ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; NANOSCIENCE AND NANOTECHNOLOGY ; NOISE</subject><ispartof>Applied physics letters, 2014-09, Vol.105 (10)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-cfc656f0929818447386435bff440b331571085eaba527cff6769ac6af67ae573</citedby><cites>FETCH-LOGICAL-c351t-cfc656f0929818447386435bff440b331571085eaba527cff6769ac6af67ae573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22310847$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Duesberg, G. S.</creatorcontrib><creatorcontrib>Pratap, R.</creatorcontrib><creatorcontrib>Raghavan, S.</creatorcontrib><title>Graphene field emission devices</title><title>Applied physics letters</title><description>Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.</description><subject>Applied physics</subject><subject>CARBON NANOTUBES</subject><subject>CURRENT DENSITY</subject><subject>Dependence</subject><subject>Devices</subject><subject>ELECTRIC POTENTIAL</subject><subject>FIELD EMISSION</subject><subject>FORECASTING</subject><subject>GRAPHENE</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NOISE</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMouFYPfgILnjxszWTyb49StAoFL3oOaTqhKe3ummwFv70r7cHTvIHfezweY7fAZ8A1PsJM2kZxIc5YBdyYGgHsOas451jrRsEluyplO75KIFbsbpF9v6GWpjHRbj2lfSolde10Td8pULlmF9HvCt2c7oR9vjx_zF_r5fvibf60rAMqGOoQg1Y68kY0FqyUBq2WqFYxSslXiKAMcKvIr7wSJsSojW580H4UnpTBCbs_5nZlSK6ENFDYhK5tKQxOCBzd8h_V5-7rQGVw2-6Q27GYEyDGTGM5jNTDkQq5KyVTdH1Oe59_HHD3t5IDd1oJfwEniVWd</recordid><startdate>20140908</startdate><enddate>20140908</enddate><creator>Kumar, S.</creator><creator>Duesberg, G. S.</creator><creator>Pratap, R.</creator><creator>Raghavan, S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140908</creationdate><title>Graphene field emission devices</title><author>Kumar, S. ; Duesberg, G. S. ; Pratap, R. ; Raghavan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-cfc656f0929818447386435bff440b331571085eaba527cff6769ac6af67ae573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>CARBON NANOTUBES</topic><topic>CURRENT DENSITY</topic><topic>Dependence</topic><topic>Devices</topic><topic>ELECTRIC POTENTIAL</topic><topic>FIELD EMISSION</topic><topic>FORECASTING</topic><topic>GRAPHENE</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NOISE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Duesberg, G. S.</creatorcontrib><creatorcontrib>Pratap, R.</creatorcontrib><creatorcontrib>Raghavan, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, S.</au><au>Duesberg, G. S.</au><au>Pratap, R.</au><au>Raghavan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene field emission devices</atitle><jtitle>Applied physics letters</jtitle><date>2014-09-08</date><risdate>2014</risdate><volume>105</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4895022</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2014-09, Vol.105 (10)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22310847
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
CARBON NANOTUBES
CURRENT DENSITY
Dependence
Devices
ELECTRIC POTENTIAL
FIELD EMISSION
FORECASTING
GRAPHENE
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
NANOSCIENCE AND NANOTECHNOLOGY
NOISE
title Graphene field emission devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20field%20emission%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Kumar,%20S.&rft.date=2014-09-08&rft.volume=105&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4895022&rft_dat=%3Cproquest_osti_%3E2126767801%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126767801&rft_id=info:pmid/&rfr_iscdi=true