Graphene field emission devices
Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens o...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-09, Vol.105 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 105 |
creator | Kumar, S. Duesberg, G. S. Pratap, R. Raghavan, S. |
description | Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications. |
doi_str_mv | 10.1063/1.4895022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22310847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126767801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-cfc656f0929818447386435bff440b331571085eaba527cff6769ac6af67ae573</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMouFYPfgILnjxszWTyb49StAoFL3oOaTqhKe3ummwFv70r7cHTvIHfezweY7fAZ8A1PsJM2kZxIc5YBdyYGgHsOas451jrRsEluyplO75KIFbsbpF9v6GWpjHRbj2lfSolde10Td8pULlmF9HvCt2c7oR9vjx_zF_r5fvibf60rAMqGOoQg1Y68kY0FqyUBq2WqFYxSslXiKAMcKvIr7wSJsSojW580H4UnpTBCbs_5nZlSK6ENFDYhK5tKQxOCBzd8h_V5-7rQGVw2-6Q27GYEyDGTGM5jNTDkQq5KyVTdH1Oe59_HHD3t5IDd1oJfwEniVWd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126767801</pqid></control><display><type>article</type><title>Graphene field emission devices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kumar, S. ; Duesberg, G. S. ; Pratap, R. ; Raghavan, S.</creator><creatorcontrib>Kumar, S. ; Duesberg, G. S. ; Pratap, R. ; Raghavan, S.</creatorcontrib><description>Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4895022</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CARBON NANOTUBES ; CURRENT DENSITY ; Dependence ; Devices ; ELECTRIC POTENTIAL ; FIELD EMISSION ; FORECASTING ; GRAPHENE ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; NANOSCIENCE AND NANOTECHNOLOGY ; NOISE</subject><ispartof>Applied physics letters, 2014-09, Vol.105 (10)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-cfc656f0929818447386435bff440b331571085eaba527cff6769ac6af67ae573</citedby><cites>FETCH-LOGICAL-c351t-cfc656f0929818447386435bff440b331571085eaba527cff6769ac6af67ae573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22310847$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Duesberg, G. S.</creatorcontrib><creatorcontrib>Pratap, R.</creatorcontrib><creatorcontrib>Raghavan, S.</creatorcontrib><title>Graphene field emission devices</title><title>Applied physics letters</title><description>Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.</description><subject>Applied physics</subject><subject>CARBON NANOTUBES</subject><subject>CURRENT DENSITY</subject><subject>Dependence</subject><subject>Devices</subject><subject>ELECTRIC POTENTIAL</subject><subject>FIELD EMISSION</subject><subject>FORECASTING</subject><subject>GRAPHENE</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NOISE</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMouFYPfgILnjxszWTyb49StAoFL3oOaTqhKe3ummwFv70r7cHTvIHfezweY7fAZ8A1PsJM2kZxIc5YBdyYGgHsOas451jrRsEluyplO75KIFbsbpF9v6GWpjHRbj2lfSolde10Td8pULlmF9HvCt2c7oR9vjx_zF_r5fvibf60rAMqGOoQg1Y68kY0FqyUBq2WqFYxSslXiKAMcKvIr7wSJsSojW580H4UnpTBCbs_5nZlSK6ENFDYhK5tKQxOCBzd8h_V5-7rQGVw2-6Q27GYEyDGTGM5jNTDkQq5KyVTdH1Oe59_HHD3t5IDd1oJfwEniVWd</recordid><startdate>20140908</startdate><enddate>20140908</enddate><creator>Kumar, S.</creator><creator>Duesberg, G. S.</creator><creator>Pratap, R.</creator><creator>Raghavan, S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140908</creationdate><title>Graphene field emission devices</title><author>Kumar, S. ; Duesberg, G. S. ; Pratap, R. ; Raghavan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-cfc656f0929818447386435bff440b331571085eaba527cff6769ac6af67ae573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>CARBON NANOTUBES</topic><topic>CURRENT DENSITY</topic><topic>Dependence</topic><topic>Devices</topic><topic>ELECTRIC POTENTIAL</topic><topic>FIELD EMISSION</topic><topic>FORECASTING</topic><topic>GRAPHENE</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NOISE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Duesberg, G. S.</creatorcontrib><creatorcontrib>Pratap, R.</creatorcontrib><creatorcontrib>Raghavan, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, S.</au><au>Duesberg, G. S.</au><au>Pratap, R.</au><au>Raghavan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene field emission devices</atitle><jtitle>Applied physics letters</jtitle><date>2014-09-08</date><risdate>2014</risdate><volume>105</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4895022</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-09, Vol.105 (10) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22310847 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics CARBON NANOTUBES CURRENT DENSITY Dependence Devices ELECTRIC POTENTIAL FIELD EMISSION FORECASTING GRAPHENE INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY NANOSCIENCE AND NANOTECHNOLOGY NOISE |
title | Graphene field emission devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20field%20emission%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Kumar,%20S.&rft.date=2014-09-08&rft.volume=105&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4895022&rft_dat=%3Cproquest_osti_%3E2126767801%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126767801&rft_id=info:pmid/&rfr_iscdi=true |