Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates
This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-09, Vol.141 (10), p.104105-104105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104105 |
---|---|
container_issue | 10 |
container_start_page | 104105 |
container_title | The Journal of chemical physics |
container_volume | 141 |
creator | Cheng, Xiaolu Steele, Ryan P |
description | This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging. |
doi_str_mv | 10.1063/1.4894507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22308359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126560028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3c48b962cc882f9ecabbaa0954f9fd3d3d0dbfd538edc03af892868f1b7399e43</originalsourceid><addsrcrecordid>eNpN0U9rFTEUBfAgFvtau_ALSMCNLqbe_JlMspRSrVBwU7eGzJ2kTckkz2RG6Ld3ynsWySKbH4fLOYS8Y3DJQInP7FJqI3sYXpEdA226QRl4TXYAnHVGgTolZ609AgAbuHxDTnnP2WCA78iv6xAiRp8X6vKDq3PJEemfOFa3xJJdom3vcamlYdk_0VAqTa7eezqX5HFNvtG1xXxPU0GXurlMnmIpdYrZLb69JSfBpeYvjv85-fn1-u7qprv98e371ZfbDiUMSydQ6tEojqg1D8ajG0fnwPQymDCJ7cE0hqkX2k8IwgVtuFY6sHEQxngpzsmHQ25pS7QN4-LxAUvO2-2WcwFa9GZTHw9qX8vv1bfFzrGhT8llX9ZmWa-4lMyY_wJf6GNZ69ZHs5xx1autW72pTweFW0Gt-mD3Nc6uPlkG9nkay-xxms2-Pyau4-ynF_lvC_EXmKeJJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126560028</pqid></control><display><type>article</type><title>Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cheng, Xiaolu ; Steele, Ryan P</creator><creatorcontrib>Cheng, Xiaolu ; Steele, Ryan P</creatorcontrib><description>This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4894507</identifier><identifier>PMID: 25217902</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anharmonicity ; Computational efficiency ; Computer simulation ; Computing time ; Coupling (molecular) ; COUPLINGS ; EFFICIENCY ; ELECTRONIC STRUCTURE ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; INTERFACES ; Molecular orbitals ; Molecular structure ; MOLECULES ; Organic chemistry ; SELF-CONSISTENT FIELD ; SIMULATION ; SPECTRA ; SPECTROSCOPY ; Spectrum analysis ; Vibrational spectra ; WATER</subject><ispartof>The Journal of chemical physics, 2014-09, Vol.141 (10), p.104105-104105</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3c48b962cc882f9ecabbaa0954f9fd3d3d0dbfd538edc03af892868f1b7399e43</citedby><cites>FETCH-LOGICAL-c407t-3c48b962cc882f9ecabbaa0954f9fd3d3d0dbfd538edc03af892868f1b7399e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25217902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22308359$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Xiaolu</creatorcontrib><creatorcontrib>Steele, Ryan P</creatorcontrib><title>Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.</description><subject>Anharmonicity</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Coupling (molecular)</subject><subject>COUPLINGS</subject><subject>EFFICIENCY</subject><subject>ELECTRONIC STRUCTURE</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>INTERFACES</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>MOLECULES</subject><subject>Organic chemistry</subject><subject>SELF-CONSISTENT FIELD</subject><subject>SIMULATION</subject><subject>SPECTRA</subject><subject>SPECTROSCOPY</subject><subject>Spectrum analysis</subject><subject>Vibrational spectra</subject><subject>WATER</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpN0U9rFTEUBfAgFvtau_ALSMCNLqbe_JlMspRSrVBwU7eGzJ2kTckkz2RG6Ld3ynsWySKbH4fLOYS8Y3DJQInP7FJqI3sYXpEdA226QRl4TXYAnHVGgTolZ609AgAbuHxDTnnP2WCA78iv6xAiRp8X6vKDq3PJEemfOFa3xJJdom3vcamlYdk_0VAqTa7eezqX5HFNvtG1xXxPU0GXurlMnmIpdYrZLb69JSfBpeYvjv85-fn1-u7qprv98e371ZfbDiUMSydQ6tEojqg1D8ajG0fnwPQymDCJ7cE0hqkX2k8IwgVtuFY6sHEQxngpzsmHQ25pS7QN4-LxAUvO2-2WcwFa9GZTHw9qX8vv1bfFzrGhT8llX9ZmWa-4lMyY_wJf6GNZ69ZHs5xx1autW72pTweFW0Gt-mD3Nc6uPlkG9nkay-xxms2-Pyau4-ynF_lvC_EXmKeJJw</recordid><startdate>20140914</startdate><enddate>20140914</enddate><creator>Cheng, Xiaolu</creator><creator>Steele, Ryan P</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140914</creationdate><title>Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates</title><author>Cheng, Xiaolu ; Steele, Ryan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3c48b962cc882f9ecabbaa0954f9fd3d3d0dbfd538edc03af892868f1b7399e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anharmonicity</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Coupling (molecular)</topic><topic>COUPLINGS</topic><topic>EFFICIENCY</topic><topic>ELECTRONIC STRUCTURE</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>INTERFACES</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>MOLECULES</topic><topic>Organic chemistry</topic><topic>SELF-CONSISTENT FIELD</topic><topic>SIMULATION</topic><topic>SPECTRA</topic><topic>SPECTROSCOPY</topic><topic>Spectrum analysis</topic><topic>Vibrational spectra</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xiaolu</creatorcontrib><creatorcontrib>Steele, Ryan P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xiaolu</au><au>Steele, Ryan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-09-14</date><risdate>2014</risdate><volume>141</volume><issue>10</issue><spage>104105</spage><epage>104105</epage><pages>104105-104105</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25217902</pmid><doi>10.1063/1.4894507</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2014-09, Vol.141 (10), p.104105-104105 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22308359 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anharmonicity Computational efficiency Computer simulation Computing time Coupling (molecular) COUPLINGS EFFICIENCY ELECTRONIC STRUCTURE INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY INTERFACES Molecular orbitals Molecular structure MOLECULES Organic chemistry SELF-CONSISTENT FIELD SIMULATION SPECTRA SPECTROSCOPY Spectrum analysis Vibrational spectra WATER |
title | Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20anharmonic%20vibrational%20spectroscopy%20for%20large%20molecules%20using%20local-mode%20coordinates&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Cheng,%20Xiaolu&rft.date=2014-09-14&rft.volume=141&rft.issue=10&rft.spage=104105&rft.epage=104105&rft.pages=104105-104105&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4894507&rft_dat=%3Cproquest_osti_%3E2126560028%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126560028&rft_id=info:pmid/25217902&rfr_iscdi=true |