Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates

This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-09, Vol.141 (10), p.104105-104105
Hauptverfasser: Cheng, Xiaolu, Steele, Ryan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104105
container_issue 10
container_start_page 104105
container_title The Journal of chemical physics
container_volume 141
creator Cheng, Xiaolu
Steele, Ryan P
description This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.
doi_str_mv 10.1063/1.4894507
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22308359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126560028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3c48b962cc882f9ecabbaa0954f9fd3d3d0dbfd538edc03af892868f1b7399e43</originalsourceid><addsrcrecordid>eNpN0U9rFTEUBfAgFvtau_ALSMCNLqbe_JlMspRSrVBwU7eGzJ2kTckkz2RG6Ld3ynsWySKbH4fLOYS8Y3DJQInP7FJqI3sYXpEdA226QRl4TXYAnHVGgTolZ609AgAbuHxDTnnP2WCA78iv6xAiRp8X6vKDq3PJEemfOFa3xJJdom3vcamlYdk_0VAqTa7eezqX5HFNvtG1xXxPU0GXurlMnmIpdYrZLb69JSfBpeYvjv85-fn1-u7qprv98e371ZfbDiUMSydQ6tEojqg1D8ajG0fnwPQymDCJ7cE0hqkX2k8IwgVtuFY6sHEQxngpzsmHQ25pS7QN4-LxAUvO2-2WcwFa9GZTHw9qX8vv1bfFzrGhT8llX9ZmWa-4lMyY_wJf6GNZ69ZHs5xx1autW72pTweFW0Gt-mD3Nc6uPlkG9nkay-xxms2-Pyau4-ynF_lvC_EXmKeJJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126560028</pqid></control><display><type>article</type><title>Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cheng, Xiaolu ; Steele, Ryan P</creator><creatorcontrib>Cheng, Xiaolu ; Steele, Ryan P</creatorcontrib><description>This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4894507</identifier><identifier>PMID: 25217902</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anharmonicity ; Computational efficiency ; Computer simulation ; Computing time ; Coupling (molecular) ; COUPLINGS ; EFFICIENCY ; ELECTRONIC STRUCTURE ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; INTERFACES ; Molecular orbitals ; Molecular structure ; MOLECULES ; Organic chemistry ; SELF-CONSISTENT FIELD ; SIMULATION ; SPECTRA ; SPECTROSCOPY ; Spectrum analysis ; Vibrational spectra ; WATER</subject><ispartof>The Journal of chemical physics, 2014-09, Vol.141 (10), p.104105-104105</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3c48b962cc882f9ecabbaa0954f9fd3d3d0dbfd538edc03af892868f1b7399e43</citedby><cites>FETCH-LOGICAL-c407t-3c48b962cc882f9ecabbaa0954f9fd3d3d0dbfd538edc03af892868f1b7399e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25217902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22308359$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Xiaolu</creatorcontrib><creatorcontrib>Steele, Ryan P</creatorcontrib><title>Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.</description><subject>Anharmonicity</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Coupling (molecular)</subject><subject>COUPLINGS</subject><subject>EFFICIENCY</subject><subject>ELECTRONIC STRUCTURE</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>INTERFACES</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>MOLECULES</subject><subject>Organic chemistry</subject><subject>SELF-CONSISTENT FIELD</subject><subject>SIMULATION</subject><subject>SPECTRA</subject><subject>SPECTROSCOPY</subject><subject>Spectrum analysis</subject><subject>Vibrational spectra</subject><subject>WATER</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpN0U9rFTEUBfAgFvtau_ALSMCNLqbe_JlMspRSrVBwU7eGzJ2kTckkz2RG6Ld3ynsWySKbH4fLOYS8Y3DJQInP7FJqI3sYXpEdA226QRl4TXYAnHVGgTolZ609AgAbuHxDTnnP2WCA78iv6xAiRp8X6vKDq3PJEemfOFa3xJJdom3vcamlYdk_0VAqTa7eezqX5HFNvtG1xXxPU0GXurlMnmIpdYrZLb69JSfBpeYvjv85-fn1-u7qprv98e371ZfbDiUMSydQ6tEojqg1D8ajG0fnwPQymDCJ7cE0hqkX2k8IwgVtuFY6sHEQxngpzsmHQ25pS7QN4-LxAUvO2-2WcwFa9GZTHw9qX8vv1bfFzrGhT8llX9ZmWa-4lMyY_wJf6GNZ69ZHs5xx1autW72pTweFW0Gt-mD3Nc6uPlkG9nkay-xxms2-Pyau4-ynF_lvC_EXmKeJJw</recordid><startdate>20140914</startdate><enddate>20140914</enddate><creator>Cheng, Xiaolu</creator><creator>Steele, Ryan P</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140914</creationdate><title>Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates</title><author>Cheng, Xiaolu ; Steele, Ryan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3c48b962cc882f9ecabbaa0954f9fd3d3d0dbfd538edc03af892868f1b7399e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anharmonicity</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Coupling (molecular)</topic><topic>COUPLINGS</topic><topic>EFFICIENCY</topic><topic>ELECTRONIC STRUCTURE</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>INTERFACES</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>MOLECULES</topic><topic>Organic chemistry</topic><topic>SELF-CONSISTENT FIELD</topic><topic>SIMULATION</topic><topic>SPECTRA</topic><topic>SPECTROSCOPY</topic><topic>Spectrum analysis</topic><topic>Vibrational spectra</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xiaolu</creatorcontrib><creatorcontrib>Steele, Ryan P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xiaolu</au><au>Steele, Ryan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-09-14</date><risdate>2014</risdate><volume>141</volume><issue>10</issue><spage>104105</spage><epage>104105</epage><pages>104105-104105</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25217902</pmid><doi>10.1063/1.4894507</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-09, Vol.141 (10), p.104105-104105
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22308359
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anharmonicity
Computational efficiency
Computer simulation
Computing time
Coupling (molecular)
COUPLINGS
EFFICIENCY
ELECTRONIC STRUCTURE
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
INTERFACES
Molecular orbitals
Molecular structure
MOLECULES
Organic chemistry
SELF-CONSISTENT FIELD
SIMULATION
SPECTRA
SPECTROSCOPY
Spectrum analysis
Vibrational spectra
WATER
title Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20anharmonic%20vibrational%20spectroscopy%20for%20large%20molecules%20using%20local-mode%20coordinates&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Cheng,%20Xiaolu&rft.date=2014-09-14&rft.volume=141&rft.issue=10&rft.spage=104105&rft.epage=104105&rft.pages=104105-104105&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4894507&rft_dat=%3Cproquest_osti_%3E2126560028%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126560028&rft_id=info:pmid/25217902&rfr_iscdi=true