Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade
Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scatterin...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1612 |
creator | Rasmussen, J Nielsen, S K Stejner, M Salewski, M Jacobsen, A S Korsholm, S B Leipold, F Meo, F Michelsen, P K Moseev, D Schubert, M Stober, J Tardini, G Wagner, D Upgrade, ASDEX |
description | Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments. |
doi_str_mv | 10.1063/1.4894036 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22308275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126572932</sourcerecordid><originalsourceid>FETCH-LOGICAL-o211t-19fa952b894d9a0a8901302f0ded746a549cb3d4467572090837b74f434eca7c3</originalsourceid><addsrcrecordid>eNpFj11LwzAYRoMoOKcX_oOA151vPpo0l2NOHQxENmF3JU3fbh1rMpt0v9-CglfPzcPhHEIeGcwYKPHMZrIwEoS6IhOW5yzTiqlrMgEwMuNS7G7JXYxHAG60Libkc9Wd-3DBmi7C6YQutRek20PoYvB042xK2Ld-Tzu0ceixQ58iDQ1tbEy0DT5Sm-h887Lc0eG8722N9-SmsaeID387JV-vy-3iPVt_vK0W83UWOGMpY6axJufVaFsbC7YwwATwBmqstVQ2l8ZVopZS6VxzMFAIXWnZSCHRWe3ElDz9ckNMbRldm9AdXPB-jCg5F1Bwnf-_xsrvAWMqj2Ho_ShWcsbViDaCix_mOFsH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126572932</pqid></control><display><type>conference_proceeding</type><title>Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade</title><source>AIP Journals Complete</source><creator>Rasmussen, J ; Nielsen, S K ; Stejner, M ; Salewski, M ; Jacobsen, A S ; Korsholm, S B ; Leipold, F ; Meo, F ; Michelsen, P K ; Moseev, D ; Schubert, M ; Stober, J ; Tardini, G ; Wagner, D ; Upgrade, ASDEX</creator><creatorcontrib>Rasmussen, J ; Nielsen, S K ; Stejner, M ; Salewski, M ; Jacobsen, A S ; Korsholm, S B ; Leipold, F ; Meo, F ; Michelsen, P K ; Moseev, D ; Schubert, M ; Stober, J ; Tardini, G ; Wagner, D ; Upgrade, ASDEX</creatorcontrib><description>Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4894036</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ASDEX TOKAMAK ; BEAM INJECTION HEATING ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; COMPUTERIZED SIMULATION ; DISTRIBUTION FUNCTIONS ; Feasibility studies ; Heating ; Ion distribution ; Ion dynamics ; MICROWAVE RADIATION ; NEUTRAL ATOM BEAM INJECTION ; PLASMA ; SPACE-TIME ; Subtraction ; THOMSON SCATTERING ; Upgrading</subject><ispartof>AIP conference proceedings, 2014, Vol.1612 (1), p.120</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22308275$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rasmussen, J</creatorcontrib><creatorcontrib>Nielsen, S K</creatorcontrib><creatorcontrib>Stejner, M</creatorcontrib><creatorcontrib>Salewski, M</creatorcontrib><creatorcontrib>Jacobsen, A S</creatorcontrib><creatorcontrib>Korsholm, S B</creatorcontrib><creatorcontrib>Leipold, F</creatorcontrib><creatorcontrib>Meo, F</creatorcontrib><creatorcontrib>Michelsen, P K</creatorcontrib><creatorcontrib>Moseev, D</creatorcontrib><creatorcontrib>Schubert, M</creatorcontrib><creatorcontrib>Stober, J</creatorcontrib><creatorcontrib>Tardini, G</creatorcontrib><creatorcontrib>Wagner, D</creatorcontrib><creatorcontrib>Upgrade, ASDEX</creatorcontrib><title>Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade</title><title>AIP conference proceedings</title><description>Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.</description><subject>ASDEX TOKAMAK</subject><subject>BEAM INJECTION HEATING</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>Feasibility studies</subject><subject>Heating</subject><subject>Ion distribution</subject><subject>Ion dynamics</subject><subject>MICROWAVE RADIATION</subject><subject>NEUTRAL ATOM BEAM INJECTION</subject><subject>PLASMA</subject><subject>SPACE-TIME</subject><subject>Subtraction</subject><subject>THOMSON SCATTERING</subject><subject>Upgrading</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFj11LwzAYRoMoOKcX_oOA151vPpo0l2NOHQxENmF3JU3fbh1rMpt0v9-CglfPzcPhHEIeGcwYKPHMZrIwEoS6IhOW5yzTiqlrMgEwMuNS7G7JXYxHAG60Libkc9Wd-3DBmi7C6YQutRek20PoYvB042xK2Ld-Tzu0ceixQ58iDQ1tbEy0DT5Sm-h887Lc0eG8722N9-SmsaeID387JV-vy-3iPVt_vK0W83UWOGMpY6axJufVaFsbC7YwwATwBmqstVQ2l8ZVopZS6VxzMFAIXWnZSCHRWe3ElDz9ckNMbRldm9AdXPB-jCg5F1Bwnf-_xsrvAWMqj2Ho_ShWcsbViDaCix_mOFsH</recordid><startdate>20140821</startdate><enddate>20140821</enddate><creator>Rasmussen, J</creator><creator>Nielsen, S K</creator><creator>Stejner, M</creator><creator>Salewski, M</creator><creator>Jacobsen, A S</creator><creator>Korsholm, S B</creator><creator>Leipold, F</creator><creator>Meo, F</creator><creator>Michelsen, P K</creator><creator>Moseev, D</creator><creator>Schubert, M</creator><creator>Stober, J</creator><creator>Tardini, G</creator><creator>Wagner, D</creator><creator>Upgrade, ASDEX</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140821</creationdate><title>Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade</title><author>Rasmussen, J ; Nielsen, S K ; Stejner, M ; Salewski, M ; Jacobsen, A S ; Korsholm, S B ; Leipold, F ; Meo, F ; Michelsen, P K ; Moseev, D ; Schubert, M ; Stober, J ; Tardini, G ; Wagner, D ; Upgrade, ASDEX</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o211t-19fa952b894d9a0a8901302f0ded746a549cb3d4467572090837b74f434eca7c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ASDEX TOKAMAK</topic><topic>BEAM INJECTION HEATING</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>Feasibility studies</topic><topic>Heating</topic><topic>Ion distribution</topic><topic>Ion dynamics</topic><topic>MICROWAVE RADIATION</topic><topic>NEUTRAL ATOM BEAM INJECTION</topic><topic>PLASMA</topic><topic>SPACE-TIME</topic><topic>Subtraction</topic><topic>THOMSON SCATTERING</topic><topic>Upgrading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasmussen, J</creatorcontrib><creatorcontrib>Nielsen, S K</creatorcontrib><creatorcontrib>Stejner, M</creatorcontrib><creatorcontrib>Salewski, M</creatorcontrib><creatorcontrib>Jacobsen, A S</creatorcontrib><creatorcontrib>Korsholm, S B</creatorcontrib><creatorcontrib>Leipold, F</creatorcontrib><creatorcontrib>Meo, F</creatorcontrib><creatorcontrib>Michelsen, P K</creatorcontrib><creatorcontrib>Moseev, D</creatorcontrib><creatorcontrib>Schubert, M</creatorcontrib><creatorcontrib>Stober, J</creatorcontrib><creatorcontrib>Tardini, G</creatorcontrib><creatorcontrib>Wagner, D</creatorcontrib><creatorcontrib>Upgrade, ASDEX</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasmussen, J</au><au>Nielsen, S K</au><au>Stejner, M</au><au>Salewski, M</au><au>Jacobsen, A S</au><au>Korsholm, S B</au><au>Leipold, F</au><au>Meo, F</au><au>Michelsen, P K</au><au>Moseev, D</au><au>Schubert, M</au><au>Stober, J</au><au>Tardini, G</au><au>Wagner, D</au><au>Upgrade, ASDEX</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade</atitle><btitle>AIP conference proceedings</btitle><date>2014-08-21</date><risdate>2014</risdate><volume>1612</volume><issue>1</issue><epage>120</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4894036</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2014, Vol.1612 (1), p.120 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_22308275 |
source | AIP Journals Complete |
subjects | ASDEX TOKAMAK BEAM INJECTION HEATING CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer simulation COMPUTERIZED SIMULATION DISTRIBUTION FUNCTIONS Feasibility studies Heating Ion distribution Ion dynamics MICROWAVE RADIATION NEUTRAL ATOM BEAM INJECTION PLASMA SPACE-TIME Subtraction THOMSON SCATTERING Upgrading |
title | Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20Collective%20Thomson%20Scattering%20measurements%20of%20fast%20ions%20at%20ASDEX%20upgrade&rft.btitle=AIP%20conference%20proceedings&rft.au=Rasmussen,%20J&rft.date=2014-08-21&rft.volume=1612&rft.issue=1&rft.epage=120&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4894036&rft_dat=%3Cproquest_osti_%3E2126572932%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126572932&rft_id=info:pmid/&rfr_iscdi=true |