Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of th...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 862 |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1618 |
creator | Skibinski Jakub Caban Piotr Wejrzanowski Tomasz Kurzydlowski, Krzysztof J |
description | In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product. |
doi_str_mv | 10.1063/1.4897867 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22307956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126530756</sourcerecordid><originalsourceid>FETCH-LOGICAL-o211t-96d5189569b9410d14432da12f5cf886f8b60b38f0e20b5489c3bce61220702c3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKcX_oOA151J2qbppYz5AdN5oeJdSdNky2iTmZMy_4N_2kwFrw6H8_DwnhehS0pmlPD8ms4KUVeCV0doQsuSZhWn_BhNCKmLjBX5-yk6A9gSwuqqEhP09TQOOlglewx2GHsZrXeAvcF6Z6P8tOmwDn4fN3gXvNIA2Dr8uHp7XuCgpYo-YAlY4uh9j03aOg127Q6GwXc6OAx6sMq7bjzA8MNs7Dr5_F4HrHutYvDOKjhHJ0b2oC_-5hS93i5e5vfZcnX3ML9ZZp5RGrOadyUVdcnrti4o6WhR5KyTlJlSGSG4ES0nbS4M0Yy0ZepD5a3SnDJGKsJUPkVXv14P0TagbNRqkxK6lKRhLCdVkv9T6e-PUUNstn4MLgVrGGW8TFiivgE3XHEK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2126530756</pqid></control><display><type>conference_proceeding</type><title>Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics</title><source>AIP Journals Complete</source><creator>Skibinski Jakub ; Caban Piotr ; Wejrzanowski Tomasz ; Kurzydlowski, Krzysztof J</creator><creatorcontrib>Skibinski Jakub ; Caban Piotr ; Wejrzanowski Tomasz ; Kurzydlowski, Krzysztof J</creatorcontrib><description>In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4897867</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chemical reactions ; Computer simulation ; COMPUTERIZED SIMULATION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystal growth ; Crystal structure ; CRYSTALS ; DESIGN ; Epitaxial growth ; GALLIUM NITRIDES ; GAS FLOW ; Growth rate ; HEAT ; Heat transfer ; MASS TRANSFER ; Mathematical models ; MATHEMATICAL SOLUTIONS ; Metalorganic chemical vapor deposition ; Organic chemistry ; ORGANOMETALLIC COMPOUNDS ; SEMICONDUCTOR MATERIALS ; Simulation ; SUBSTRATES ; VAPOR PHASE EPITAXY</subject><ispartof>AIP conference proceedings, 2014, Vol.1618 (1), p.862</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23910,23911,25119,27902,27903</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22307956$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Skibinski Jakub</creatorcontrib><creatorcontrib>Caban Piotr</creatorcontrib><creatorcontrib>Wejrzanowski Tomasz</creatorcontrib><creatorcontrib>Kurzydlowski, Krzysztof J</creatorcontrib><title>Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics</title><title>AIP conference proceedings</title><description>In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.</description><subject>Chemical reactions</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>CRYSTALS</subject><subject>DESIGN</subject><subject>Epitaxial growth</subject><subject>GALLIUM NITRIDES</subject><subject>GAS FLOW</subject><subject>Growth rate</subject><subject>HEAT</subject><subject>Heat transfer</subject><subject>MASS TRANSFER</subject><subject>Mathematical models</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemistry</subject><subject>ORGANOMETALLIC COMPOUNDS</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>Simulation</subject><subject>SUBSTRATES</subject><subject>VAPOR PHASE EPITAXY</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkF1LwzAUhoMoOKcX_oOA151J2qbppYz5AdN5oeJdSdNky2iTmZMy_4N_2kwFrw6H8_DwnhehS0pmlPD8ms4KUVeCV0doQsuSZhWn_BhNCKmLjBX5-yk6A9gSwuqqEhP09TQOOlglewx2GHsZrXeAvcF6Z6P8tOmwDn4fN3gXvNIA2Dr8uHp7XuCgpYo-YAlY4uh9j03aOg127Q6GwXc6OAx6sMq7bjzA8MNs7Dr5_F4HrHutYvDOKjhHJ0b2oC_-5hS93i5e5vfZcnX3ML9ZZp5RGrOadyUVdcnrti4o6WhR5KyTlJlSGSG4ES0nbS4M0Yy0ZepD5a3SnDJGKsJUPkVXv14P0TagbNRqkxK6lKRhLCdVkv9T6e-PUUNstn4MLgVrGGW8TFiivgE3XHEK</recordid><startdate>20141006</startdate><enddate>20141006</enddate><creator>Skibinski Jakub</creator><creator>Caban Piotr</creator><creator>Wejrzanowski Tomasz</creator><creator>Kurzydlowski, Krzysztof J</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141006</creationdate><title>Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics</title><author>Skibinski Jakub ; Caban Piotr ; Wejrzanowski Tomasz ; Kurzydlowski, Krzysztof J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o211t-96d5189569b9410d14432da12f5cf886f8b60b38f0e20b5489c3bce61220702c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical reactions</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>CRYSTALS</topic><topic>DESIGN</topic><topic>Epitaxial growth</topic><topic>GALLIUM NITRIDES</topic><topic>GAS FLOW</topic><topic>Growth rate</topic><topic>HEAT</topic><topic>Heat transfer</topic><topic>MASS TRANSFER</topic><topic>Mathematical models</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemistry</topic><topic>ORGANOMETALLIC COMPOUNDS</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>Simulation</topic><topic>SUBSTRATES</topic><topic>VAPOR PHASE EPITAXY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skibinski Jakub</creatorcontrib><creatorcontrib>Caban Piotr</creatorcontrib><creatorcontrib>Wejrzanowski Tomasz</creatorcontrib><creatorcontrib>Kurzydlowski, Krzysztof J</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skibinski Jakub</au><au>Caban Piotr</au><au>Wejrzanowski Tomasz</au><au>Kurzydlowski, Krzysztof J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics</atitle><btitle>AIP conference proceedings</btitle><date>2014-10-06</date><risdate>2014</risdate><volume>1618</volume><issue>1</issue><epage>862</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4897867</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2014, Vol.1618 (1), p.862 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_22307956 |
source | AIP Journals Complete |
subjects | Chemical reactions Computer simulation COMPUTERIZED SIMULATION CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Crystal growth Crystal structure CRYSTALS DESIGN Epitaxial growth GALLIUM NITRIDES GAS FLOW Growth rate HEAT Heat transfer MASS TRANSFER Mathematical models MATHEMATICAL SOLUTIONS Metalorganic chemical vapor deposition Organic chemistry ORGANOMETALLIC COMPOUNDS SEMICONDUCTOR MATERIALS Simulation SUBSTRATES VAPOR PHASE EPITAXY |
title | Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulations%20of%20epitaxial%20growth%20process%20in%20MOVPE%20reactor%20as%20a%20tool%20for%20design%20of%20modern%20semiconductors%20for%20high%20power%20electronics&rft.btitle=AIP%20conference%20proceedings&rft.au=Skibinski%20Jakub&rft.date=2014-10-06&rft.volume=1618&rft.issue=1&rft.epage=862&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4897867&rft_dat=%3Cproquest_osti_%3E2126530756%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126530756&rft_id=info:pmid/&rfr_iscdi=true |