Composition dependent valence band order in c-oriented wurtzite AlGaN layers

The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-09, Vol.116 (11)
Hauptverfasser: Neuschl, B., Helbing, J., Knab, M., Lauer, H., Madel, M., Thonke, K., Meisch, T., Forghani, K., Scholz, F., Feneberg, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of applied physics
container_volume 116
creator Neuschl, B.
Helbing, J.
Knab, M.
Lauer, H.
Madel, M.
Thonke, K.
Meisch, T.
Forghani, K.
Scholz, F.
Feneberg, M.
description The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k⋅p theory yields a critical relative aluminum concentration xc=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ9 symmetry of bΓ9=0.85eV, and propose a possible bowing for the crystal field energy of bcf=−0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of AlxGa1-xN/AlyGa1-yN quantum well structures is discussed for different compositions.
doi_str_mv 10.1063/1.4895995
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22305991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126560512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-3606edeb60727659abfb153ab845296a8b79ecf11f60dd0feac060eb1334ed4a3</originalsourceid><addsrcrecordid>eNpFkEFLwzAYhoMoOKcH_0HAk4fOL0mTNscxdApDL3oOafIVO7qkJp2iv97KBp7ew_vw8vIQcs1gwUCJO7Yoay21lidkxqDWRSUlnJIZAGdFrSt9Ti5y3gIwVgs9I5tV3A0xd2MXA_U4YPAYRvppewwOaWODpzF5TLQL1BUxdVONnn7t0_jTjUiX_do-095-Y8qX5Ky1fcarY87J28P96-qx2Lysn1bLTeF4LcdCKFDosVFQ8UpJbZu2YVLYpi4l18rWTaXRtYy1CryHFq0DBdgwIUr0pRVzcnPYjXnsTHbTD_fuYgjoRsO5gEkA-6eGFD_2mEezjfsUpmOGM66kAsn4RN0eKJdizglbM6RuZ9O3YWD-lBpmjkrFLx_XZ6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126560512</pqid></control><display><type>article</type><title>Composition dependent valence band order in c-oriented wurtzite AlGaN layers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Neuschl, B. ; Helbing, J. ; Knab, M. ; Lauer, H. ; Madel, M. ; Thonke, K. ; Meisch, T. ; Forghani, K. ; Scholz, F. ; Feneberg, M.</creator><creatorcontrib>Neuschl, B. ; Helbing, J. ; Knab, M. ; Lauer, H. ; Madel, M. ; Thonke, K. ; Meisch, T. ; Forghani, K. ; Scholz, F. ; Feneberg, M.</creatorcontrib><description>The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k⋅p theory yields a critical relative aluminum concentration xc=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ9 symmetry of bΓ9=0.85eV, and propose a possible bowing for the crystal field energy of bcf=−0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of AlxGa1-xN/AlyGa1-yN quantum well structures is discussed for different compositions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4895995</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ALUMINIUM COMPOUNDS ; Aluminum ; Aluminum gallium nitrides ; Applied physics ; Bowing ; Composition ; CONCENTRATION RATIO ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COVERINGS ; CRYSTAL FIELD ; EFFICIENCY ; Electronics ; Energy gap ; EXTRACTION ; GALLIUM NITRIDES ; LAYERS ; PHOTOLUMINESCENCE ; POLARIZATION ; QUANTUM WELLS ; SAPPHIRE ; SPECTROSCOPY ; Strain analysis ; STRAINS ; SUBSTRATES ; SYMMETRY ; TEMPERATURE DEPENDENCE ; VALENCE ; Valence band ; VISIBLE RADIATION ; Wurtzite ; X ray spectra ; X-RAY DIFFRACTION</subject><ispartof>Journal of applied physics, 2014-09, Vol.116 (11)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-3606edeb60727659abfb153ab845296a8b79ecf11f60dd0feac060eb1334ed4a3</citedby><cites>FETCH-LOGICAL-c285t-3606edeb60727659abfb153ab845296a8b79ecf11f60dd0feac060eb1334ed4a3</cites><orcidid>0000-0003-4253-0061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22305991$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Neuschl, B.</creatorcontrib><creatorcontrib>Helbing, J.</creatorcontrib><creatorcontrib>Knab, M.</creatorcontrib><creatorcontrib>Lauer, H.</creatorcontrib><creatorcontrib>Madel, M.</creatorcontrib><creatorcontrib>Thonke, K.</creatorcontrib><creatorcontrib>Meisch, T.</creatorcontrib><creatorcontrib>Forghani, K.</creatorcontrib><creatorcontrib>Scholz, F.</creatorcontrib><creatorcontrib>Feneberg, M.</creatorcontrib><title>Composition dependent valence band order in c-oriented wurtzite AlGaN layers</title><title>Journal of applied physics</title><description>The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k⋅p theory yields a critical relative aluminum concentration xc=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ9 symmetry of bΓ9=0.85eV, and propose a possible bowing for the crystal field energy of bcf=−0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of AlxGa1-xN/AlyGa1-yN quantum well structures is discussed for different compositions.</description><subject>ALUMINIUM COMPOUNDS</subject><subject>Aluminum</subject><subject>Aluminum gallium nitrides</subject><subject>Applied physics</subject><subject>Bowing</subject><subject>Composition</subject><subject>CONCENTRATION RATIO</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COVERINGS</subject><subject>CRYSTAL FIELD</subject><subject>EFFICIENCY</subject><subject>Electronics</subject><subject>Energy gap</subject><subject>EXTRACTION</subject><subject>GALLIUM NITRIDES</subject><subject>LAYERS</subject><subject>PHOTOLUMINESCENCE</subject><subject>POLARIZATION</subject><subject>QUANTUM WELLS</subject><subject>SAPPHIRE</subject><subject>SPECTROSCOPY</subject><subject>Strain analysis</subject><subject>STRAINS</subject><subject>SUBSTRATES</subject><subject>SYMMETRY</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>VALENCE</subject><subject>Valence band</subject><subject>VISIBLE RADIATION</subject><subject>Wurtzite</subject><subject>X ray spectra</subject><subject>X-RAY DIFFRACTION</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAYhoMoOKcH_0HAk4fOL0mTNscxdApDL3oOafIVO7qkJp2iv97KBp7ew_vw8vIQcs1gwUCJO7Yoay21lidkxqDWRSUlnJIZAGdFrSt9Ti5y3gIwVgs9I5tV3A0xd2MXA_U4YPAYRvppewwOaWODpzF5TLQL1BUxdVONnn7t0_jTjUiX_do-095-Y8qX5Ky1fcarY87J28P96-qx2Lysn1bLTeF4LcdCKFDosVFQ8UpJbZu2YVLYpi4l18rWTaXRtYy1CryHFq0DBdgwIUr0pRVzcnPYjXnsTHbTD_fuYgjoRsO5gEkA-6eGFD_2mEezjfsUpmOGM66kAsn4RN0eKJdizglbM6RuZ9O3YWD-lBpmjkrFLx_XZ6c</recordid><startdate>20140921</startdate><enddate>20140921</enddate><creator>Neuschl, B.</creator><creator>Helbing, J.</creator><creator>Knab, M.</creator><creator>Lauer, H.</creator><creator>Madel, M.</creator><creator>Thonke, K.</creator><creator>Meisch, T.</creator><creator>Forghani, K.</creator><creator>Scholz, F.</creator><creator>Feneberg, M.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4253-0061</orcidid></search><sort><creationdate>20140921</creationdate><title>Composition dependent valence band order in c-oriented wurtzite AlGaN layers</title><author>Neuschl, B. ; Helbing, J. ; Knab, M. ; Lauer, H. ; Madel, M. ; Thonke, K. ; Meisch, T. ; Forghani, K. ; Scholz, F. ; Feneberg, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-3606edeb60727659abfb153ab845296a8b79ecf11f60dd0feac060eb1334ed4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ALUMINIUM COMPOUNDS</topic><topic>Aluminum</topic><topic>Aluminum gallium nitrides</topic><topic>Applied physics</topic><topic>Bowing</topic><topic>Composition</topic><topic>CONCENTRATION RATIO</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COVERINGS</topic><topic>CRYSTAL FIELD</topic><topic>EFFICIENCY</topic><topic>Electronics</topic><topic>Energy gap</topic><topic>EXTRACTION</topic><topic>GALLIUM NITRIDES</topic><topic>LAYERS</topic><topic>PHOTOLUMINESCENCE</topic><topic>POLARIZATION</topic><topic>QUANTUM WELLS</topic><topic>SAPPHIRE</topic><topic>SPECTROSCOPY</topic><topic>Strain analysis</topic><topic>STRAINS</topic><topic>SUBSTRATES</topic><topic>SYMMETRY</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>VALENCE</topic><topic>Valence band</topic><topic>VISIBLE RADIATION</topic><topic>Wurtzite</topic><topic>X ray spectra</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neuschl, B.</creatorcontrib><creatorcontrib>Helbing, J.</creatorcontrib><creatorcontrib>Knab, M.</creatorcontrib><creatorcontrib>Lauer, H.</creatorcontrib><creatorcontrib>Madel, M.</creatorcontrib><creatorcontrib>Thonke, K.</creatorcontrib><creatorcontrib>Meisch, T.</creatorcontrib><creatorcontrib>Forghani, K.</creatorcontrib><creatorcontrib>Scholz, F.</creatorcontrib><creatorcontrib>Feneberg, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neuschl, B.</au><au>Helbing, J.</au><au>Knab, M.</au><au>Lauer, H.</au><au>Madel, M.</au><au>Thonke, K.</au><au>Meisch, T.</au><au>Forghani, K.</au><au>Scholz, F.</au><au>Feneberg, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition dependent valence band order in c-oriented wurtzite AlGaN layers</atitle><jtitle>Journal of applied physics</jtitle><date>2014-09-21</date><risdate>2014</risdate><volume>116</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k⋅p theory yields a critical relative aluminum concentration xc=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ9 symmetry of bΓ9=0.85eV, and propose a possible bowing for the crystal field energy of bcf=−0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of AlxGa1-xN/AlyGa1-yN quantum well structures is discussed for different compositions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4895995</doi><orcidid>https://orcid.org/0000-0003-4253-0061</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-09, Vol.116 (11)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22305991
source AIP Journals Complete; Alma/SFX Local Collection
subjects ALUMINIUM COMPOUNDS
Aluminum
Aluminum gallium nitrides
Applied physics
Bowing
Composition
CONCENTRATION RATIO
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
COVERINGS
CRYSTAL FIELD
EFFICIENCY
Electronics
Energy gap
EXTRACTION
GALLIUM NITRIDES
LAYERS
PHOTOLUMINESCENCE
POLARIZATION
QUANTUM WELLS
SAPPHIRE
SPECTROSCOPY
Strain analysis
STRAINS
SUBSTRATES
SYMMETRY
TEMPERATURE DEPENDENCE
VALENCE
Valence band
VISIBLE RADIATION
Wurtzite
X ray spectra
X-RAY DIFFRACTION
title Composition dependent valence band order in c-oriented wurtzite AlGaN layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20dependent%20valence%20band%20order%20in%20c-oriented%20wurtzite%20AlGaN%20layers&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Neuschl,%20B.&rft.date=2014-09-21&rft.volume=116&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4895995&rft_dat=%3Cproquest_osti_%3E2126560512%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126560512&rft_id=info:pmid/&rfr_iscdi=true