Composition dependent valence band order in c-oriented wurtzite AlGaN layers
The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-09, Vol.116 (11) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 116 |
creator | Neuschl, B. Helbing, J. Knab, M. Lauer, H. Madel, M. Thonke, K. Meisch, T. Forghani, K. Scholz, F. Feneberg, M. |
description | The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k⋅p theory yields a critical relative aluminum concentration xc=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ9 symmetry of bΓ9=0.85eV, and propose a possible bowing for the crystal field energy of bcf=−0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of AlxGa1-xN/AlyGa1-yN quantum well structures is discussed for different compositions. |
doi_str_mv | 10.1063/1.4895995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22305991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126560512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-3606edeb60727659abfb153ab845296a8b79ecf11f60dd0feac060eb1334ed4a3</originalsourceid><addsrcrecordid>eNpFkEFLwzAYhoMoOKcH_0HAk4fOL0mTNscxdApDL3oOafIVO7qkJp2iv97KBp7ew_vw8vIQcs1gwUCJO7Yoay21lidkxqDWRSUlnJIZAGdFrSt9Ti5y3gIwVgs9I5tV3A0xd2MXA_U4YPAYRvppewwOaWODpzF5TLQL1BUxdVONnn7t0_jTjUiX_do-095-Y8qX5Ky1fcarY87J28P96-qx2Lysn1bLTeF4LcdCKFDosVFQ8UpJbZu2YVLYpi4l18rWTaXRtYy1CryHFq0DBdgwIUr0pRVzcnPYjXnsTHbTD_fuYgjoRsO5gEkA-6eGFD_2mEezjfsUpmOGM66kAsn4RN0eKJdizglbM6RuZ9O3YWD-lBpmjkrFLx_XZ6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126560512</pqid></control><display><type>article</type><title>Composition dependent valence band order in c-oriented wurtzite AlGaN layers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Neuschl, B. ; Helbing, J. ; Knab, M. ; Lauer, H. ; Madel, M. ; Thonke, K. ; Meisch, T. ; Forghani, K. ; Scholz, F. ; Feneberg, M.</creator><creatorcontrib>Neuschl, B. ; Helbing, J. ; Knab, M. ; Lauer, H. ; Madel, M. ; Thonke, K. ; Meisch, T. ; Forghani, K. ; Scholz, F. ; Feneberg, M.</creatorcontrib><description>The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k⋅p theory yields a critical relative aluminum concentration xc=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ9 symmetry of bΓ9=0.85eV, and propose a possible bowing for the crystal field energy of bcf=−0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of AlxGa1-xN/AlyGa1-yN quantum well structures is discussed for different compositions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4895995</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ALUMINIUM COMPOUNDS ; Aluminum ; Aluminum gallium nitrides ; Applied physics ; Bowing ; Composition ; CONCENTRATION RATIO ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COVERINGS ; CRYSTAL FIELD ; EFFICIENCY ; Electronics ; Energy gap ; EXTRACTION ; GALLIUM NITRIDES ; LAYERS ; PHOTOLUMINESCENCE ; POLARIZATION ; QUANTUM WELLS ; SAPPHIRE ; SPECTROSCOPY ; Strain analysis ; STRAINS ; SUBSTRATES ; SYMMETRY ; TEMPERATURE DEPENDENCE ; VALENCE ; Valence band ; VISIBLE RADIATION ; Wurtzite ; X ray spectra ; X-RAY DIFFRACTION</subject><ispartof>Journal of applied physics, 2014-09, Vol.116 (11)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-3606edeb60727659abfb153ab845296a8b79ecf11f60dd0feac060eb1334ed4a3</citedby><cites>FETCH-LOGICAL-c285t-3606edeb60727659abfb153ab845296a8b79ecf11f60dd0feac060eb1334ed4a3</cites><orcidid>0000-0003-4253-0061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22305991$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Neuschl, B.</creatorcontrib><creatorcontrib>Helbing, J.</creatorcontrib><creatorcontrib>Knab, M.</creatorcontrib><creatorcontrib>Lauer, H.</creatorcontrib><creatorcontrib>Madel, M.</creatorcontrib><creatorcontrib>Thonke, K.</creatorcontrib><creatorcontrib>Meisch, T.</creatorcontrib><creatorcontrib>Forghani, K.</creatorcontrib><creatorcontrib>Scholz, F.</creatorcontrib><creatorcontrib>Feneberg, M.</creatorcontrib><title>Composition dependent valence band order in c-oriented wurtzite AlGaN layers</title><title>Journal of applied physics</title><description>The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k⋅p theory yields a critical relative aluminum concentration xc=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ9 symmetry of bΓ9=0.85eV, and propose a possible bowing for the crystal field energy of bcf=−0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of AlxGa1-xN/AlyGa1-yN quantum well structures is discussed for different compositions.</description><subject>ALUMINIUM COMPOUNDS</subject><subject>Aluminum</subject><subject>Aluminum gallium nitrides</subject><subject>Applied physics</subject><subject>Bowing</subject><subject>Composition</subject><subject>CONCENTRATION RATIO</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COVERINGS</subject><subject>CRYSTAL FIELD</subject><subject>EFFICIENCY</subject><subject>Electronics</subject><subject>Energy gap</subject><subject>EXTRACTION</subject><subject>GALLIUM NITRIDES</subject><subject>LAYERS</subject><subject>PHOTOLUMINESCENCE</subject><subject>POLARIZATION</subject><subject>QUANTUM WELLS</subject><subject>SAPPHIRE</subject><subject>SPECTROSCOPY</subject><subject>Strain analysis</subject><subject>STRAINS</subject><subject>SUBSTRATES</subject><subject>SYMMETRY</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>VALENCE</subject><subject>Valence band</subject><subject>VISIBLE RADIATION</subject><subject>Wurtzite</subject><subject>X ray spectra</subject><subject>X-RAY DIFFRACTION</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAYhoMoOKcH_0HAk4fOL0mTNscxdApDL3oOafIVO7qkJp2iv97KBp7ew_vw8vIQcs1gwUCJO7Yoay21lidkxqDWRSUlnJIZAGdFrSt9Ti5y3gIwVgs9I5tV3A0xd2MXA_U4YPAYRvppewwOaWODpzF5TLQL1BUxdVONnn7t0_jTjUiX_do-095-Y8qX5Ky1fcarY87J28P96-qx2Lysn1bLTeF4LcdCKFDosVFQ8UpJbZu2YVLYpi4l18rWTaXRtYy1CryHFq0DBdgwIUr0pRVzcnPYjXnsTHbTD_fuYgjoRsO5gEkA-6eGFD_2mEezjfsUpmOGM66kAsn4RN0eKJdizglbM6RuZ9O3YWD-lBpmjkrFLx_XZ6c</recordid><startdate>20140921</startdate><enddate>20140921</enddate><creator>Neuschl, B.</creator><creator>Helbing, J.</creator><creator>Knab, M.</creator><creator>Lauer, H.</creator><creator>Madel, M.</creator><creator>Thonke, K.</creator><creator>Meisch, T.</creator><creator>Forghani, K.</creator><creator>Scholz, F.</creator><creator>Feneberg, M.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4253-0061</orcidid></search><sort><creationdate>20140921</creationdate><title>Composition dependent valence band order in c-oriented wurtzite AlGaN layers</title><author>Neuschl, B. ; Helbing, J. ; Knab, M. ; Lauer, H. ; Madel, M. ; Thonke, K. ; Meisch, T. ; Forghani, K. ; Scholz, F. ; Feneberg, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-3606edeb60727659abfb153ab845296a8b79ecf11f60dd0feac060eb1334ed4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ALUMINIUM COMPOUNDS</topic><topic>Aluminum</topic><topic>Aluminum gallium nitrides</topic><topic>Applied physics</topic><topic>Bowing</topic><topic>Composition</topic><topic>CONCENTRATION RATIO</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COVERINGS</topic><topic>CRYSTAL FIELD</topic><topic>EFFICIENCY</topic><topic>Electronics</topic><topic>Energy gap</topic><topic>EXTRACTION</topic><topic>GALLIUM NITRIDES</topic><topic>LAYERS</topic><topic>PHOTOLUMINESCENCE</topic><topic>POLARIZATION</topic><topic>QUANTUM WELLS</topic><topic>SAPPHIRE</topic><topic>SPECTROSCOPY</topic><topic>Strain analysis</topic><topic>STRAINS</topic><topic>SUBSTRATES</topic><topic>SYMMETRY</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>VALENCE</topic><topic>Valence band</topic><topic>VISIBLE RADIATION</topic><topic>Wurtzite</topic><topic>X ray spectra</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neuschl, B.</creatorcontrib><creatorcontrib>Helbing, J.</creatorcontrib><creatorcontrib>Knab, M.</creatorcontrib><creatorcontrib>Lauer, H.</creatorcontrib><creatorcontrib>Madel, M.</creatorcontrib><creatorcontrib>Thonke, K.</creatorcontrib><creatorcontrib>Meisch, T.</creatorcontrib><creatorcontrib>Forghani, K.</creatorcontrib><creatorcontrib>Scholz, F.</creatorcontrib><creatorcontrib>Feneberg, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neuschl, B.</au><au>Helbing, J.</au><au>Knab, M.</au><au>Lauer, H.</au><au>Madel, M.</au><au>Thonke, K.</au><au>Meisch, T.</au><au>Forghani, K.</au><au>Scholz, F.</au><au>Feneberg, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition dependent valence band order in c-oriented wurtzite AlGaN layers</atitle><jtitle>Journal of applied physics</jtitle><date>2014-09-21</date><risdate>2014</risdate><volume>116</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k⋅p theory yields a critical relative aluminum concentration xc=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ9 symmetry of bΓ9=0.85eV, and propose a possible bowing for the crystal field energy of bcf=−0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of AlxGa1-xN/AlyGa1-yN quantum well structures is discussed for different compositions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4895995</doi><orcidid>https://orcid.org/0000-0003-4253-0061</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2014-09, Vol.116 (11) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22305991 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | ALUMINIUM COMPOUNDS Aluminum Aluminum gallium nitrides Applied physics Bowing Composition CONCENTRATION RATIO CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY COVERINGS CRYSTAL FIELD EFFICIENCY Electronics Energy gap EXTRACTION GALLIUM NITRIDES LAYERS PHOTOLUMINESCENCE POLARIZATION QUANTUM WELLS SAPPHIRE SPECTROSCOPY Strain analysis STRAINS SUBSTRATES SYMMETRY TEMPERATURE DEPENDENCE VALENCE Valence band VISIBLE RADIATION Wurtzite X ray spectra X-RAY DIFFRACTION |
title | Composition dependent valence band order in c-oriented wurtzite AlGaN layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20dependent%20valence%20band%20order%20in%20c-oriented%20wurtzite%20AlGaN%20layers&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Neuschl,%20B.&rft.date=2014-09-21&rft.volume=116&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4895995&rft_dat=%3Cproquest_osti_%3E2126560512%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126560512&rft_id=info:pmid/&rfr_iscdi=true |