The Surface Atmosphere Integrated Field Laboratory (SAIL) Campaign

The science of mountainous hydrology spans the atmosphere through the bedrock and inherently crosses physical and disciplinary boundaries: land-atmosphere interactions in complex terrain enhance clouds and precipitation, while watersheds retain and release water over a large range of spatial and tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2023-12, Vol.104 (12)
Hauptverfasser: Feldman, D. R., Aiken, A. C., Boos, W. R., Carroll, R. W. H., Chandrasekar, V., Collis, S., Creamean, J. M., de Boer, G., Deems, J., DeMott, P. J., Fan, J., Flores, A. N., Gochis, D., Grover, M., Hill, T. J., Hodshire, A., Hulm, E., Hume, C. C., Jackson, R., Junyent, F., Kennedy, A., Kumjian, M., Levin, E. T., Lundquist, J. D., O’Brien, J., Raleigh, M. S., Reithel, J., Rhoades, A., Rittger, K., Rudisill, W., Sherman, Z., Siirila-Woodburn, E., Skiles, S. M., Smith, J. N., Sullivan, R. C., Theisen, A., Tuftedal, M., Varble, A. C., Wiedlea, A., Wielandt, S., Williams, K., Xu, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Bulletin of the American Meteorological Society
container_volume 104
creator Feldman, D. R.
Aiken, A. C.
Boos, W. R.
Carroll, R. W. H.
Chandrasekar, V.
Collis, S.
Creamean, J. M.
de Boer, G.
Deems, J.
DeMott, P. J.
Fan, J.
Flores, A. N.
Gochis, D.
Grover, M.
Hill, T. J.
Hodshire, A.
Hulm, E.
Hume, C. C.
Jackson, R.
Junyent, F.
Kennedy, A.
Kumjian, M.
Levin, E. T.
Lundquist, J. D.
O’Brien, J.
Raleigh, M. S.
Reithel, J.
Rhoades, A.
Rittger, K.
Rudisill, W.
Sherman, Z.
Siirila-Woodburn, E.
Skiles, S. M.
Smith, J. N.
Sullivan, R. C.
Theisen, A.
Tuftedal, M.
Varble, A. C.
Wiedlea, A.
Wielandt, S.
Williams, K.
Xu, Z.
description The science of mountainous hydrology spans the atmosphere through the bedrock and inherently crosses physical and disciplinary boundaries: land-atmosphere interactions in complex terrain enhance clouds and precipitation, while watersheds retain and release water over a large range of spatial and temporal scales. Limited observations in complex terrain challenge efforts to improve predictive models of the hydrology in the face of rapid changes. The Upper Colorado River exemplifies these challenges, especially with ongoing mismatches between precipitation, snowpack, and discharge. Consequently, the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) user facility has deployed an observatory to the East River Watershed near Crested Butte, Colorado between September 2021 and June 2023 to measure the main atmospheric drivers of water resources, including precipitation, clouds, winds, aerosols, radiation, temperature and humidity. This effort, called the Surface Atmosphere Integrated Field Laboratory (SAIL), is also working in tandem with DOE-sponsored surface and subsurface hydrologists and other federal, state, and local partners. SAIL data can be benchmarks for model development by producing a wide range of observational information on precipitation and its associated processes, including those processes that impact snowpack sublimation and redistribution, aerosol direct radiative effects in the atmosphere and in the snowpack, aerosol impacts on clouds and precipitation, and processes controlling surface fluxes of energy and mass. Preliminary data from SAIL’s first year showcase the rich information content in SAIL’s many data-streams and support testing hypotheses that will ultimately improve scientific understanding and predictability of Upper Colorado River hydrology in 2023 and beyond.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2229516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229516</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_22295163</originalsourceid><addsrcrecordid>eNpjYeA0MDAw1gUS5hwMXMXFWSCusYUhJ4NTSEaqQnBpUVpicqqCY0lufnFBRmpRqoJnXklqelFiSWqKgltmak6Kgk9iUj6Qn19UqaAR7Ojpo6ngnJhbkJiZnsfDwJqWmFOcyguluRmU3FxDnD1084tLMuOLkzNLUpMzkvPz8lKTS-KNjIwsTQ3NjIlSBABRYjfo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Surface Atmosphere Integrated Field Laboratory (SAIL) Campaign</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Feldman, D. R. ; Aiken, A. C. ; Boos, W. R. ; Carroll, R. W. H. ; Chandrasekar, V. ; Collis, S. ; Creamean, J. M. ; de Boer, G. ; Deems, J. ; DeMott, P. J. ; Fan, J. ; Flores, A. N. ; Gochis, D. ; Grover, M. ; Hill, T. J. ; Hodshire, A. ; Hulm, E. ; Hume, C. C. ; Jackson, R. ; Junyent, F. ; Kennedy, A. ; Kumjian, M. ; Levin, E. T. ; Lundquist, J. D. ; O’Brien, J. ; Raleigh, M. S. ; Reithel, J. ; Rhoades, A. ; Rittger, K. ; Rudisill, W. ; Sherman, Z. ; Siirila-Woodburn, E. ; Skiles, S. M. ; Smith, J. N. ; Sullivan, R. C. ; Theisen, A. ; Tuftedal, M. ; Varble, A. C. ; Wiedlea, A. ; Wielandt, S. ; Williams, K. ; Xu, Z.</creator><creatorcontrib>Feldman, D. R. ; Aiken, A. C. ; Boos, W. R. ; Carroll, R. W. H. ; Chandrasekar, V. ; Collis, S. ; Creamean, J. M. ; de Boer, G. ; Deems, J. ; DeMott, P. J. ; Fan, J. ; Flores, A. N. ; Gochis, D. ; Grover, M. ; Hill, T. J. ; Hodshire, A. ; Hulm, E. ; Hume, C. C. ; Jackson, R. ; Junyent, F. ; Kennedy, A. ; Kumjian, M. ; Levin, E. T. ; Lundquist, J. D. ; O’Brien, J. ; Raleigh, M. S. ; Reithel, J. ; Rhoades, A. ; Rittger, K. ; Rudisill, W. ; Sherman, Z. ; Siirila-Woodburn, E. ; Skiles, S. M. ; Smith, J. N. ; Sullivan, R. C. ; Theisen, A. ; Tuftedal, M. ; Varble, A. C. ; Wiedlea, A. ; Wielandt, S. ; Williams, K. ; Xu, Z. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>The science of mountainous hydrology spans the atmosphere through the bedrock and inherently crosses physical and disciplinary boundaries: land-atmosphere interactions in complex terrain enhance clouds and precipitation, while watersheds retain and release water over a large range of spatial and temporal scales. Limited observations in complex terrain challenge efforts to improve predictive models of the hydrology in the face of rapid changes. The Upper Colorado River exemplifies these challenges, especially with ongoing mismatches between precipitation, snowpack, and discharge. Consequently, the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) user facility has deployed an observatory to the East River Watershed near Crested Butte, Colorado between September 2021 and June 2023 to measure the main atmospheric drivers of water resources, including precipitation, clouds, winds, aerosols, radiation, temperature and humidity. This effort, called the Surface Atmosphere Integrated Field Laboratory (SAIL), is also working in tandem with DOE-sponsored surface and subsurface hydrologists and other federal, state, and local partners. SAIL data can be benchmarks for model development by producing a wide range of observational information on precipitation and its associated processes, including those processes that impact snowpack sublimation and redistribution, aerosol direct radiative effects in the atmosphere and in the snowpack, aerosol impacts on clouds and precipitation, and processes controlling surface fluxes of energy and mass. Preliminary data from SAIL’s first year showcase the rich information content in SAIL’s many data-streams and support testing hypotheses that will ultimately improve scientific understanding and predictability of Upper Colorado River hydrology in 2023 and beyond.</description><identifier>ISSN: 0003-0007</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><subject>Aerosols/particulates ; Atmosphere-land interaction ; Complex terrain ; ENVIRONMENTAL SCIENCES ; Hydrology ; Measurements ; Mountain meteorology</subject><ispartof>Bulletin of the American Meteorological Society, 2023-12, Vol.104 (12)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2229516$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Feldman, D. R.</creatorcontrib><creatorcontrib>Aiken, A. C.</creatorcontrib><creatorcontrib>Boos, W. R.</creatorcontrib><creatorcontrib>Carroll, R. W. H.</creatorcontrib><creatorcontrib>Chandrasekar, V.</creatorcontrib><creatorcontrib>Collis, S.</creatorcontrib><creatorcontrib>Creamean, J. M.</creatorcontrib><creatorcontrib>de Boer, G.</creatorcontrib><creatorcontrib>Deems, J.</creatorcontrib><creatorcontrib>DeMott, P. J.</creatorcontrib><creatorcontrib>Fan, J.</creatorcontrib><creatorcontrib>Flores, A. N.</creatorcontrib><creatorcontrib>Gochis, D.</creatorcontrib><creatorcontrib>Grover, M.</creatorcontrib><creatorcontrib>Hill, T. J.</creatorcontrib><creatorcontrib>Hodshire, A.</creatorcontrib><creatorcontrib>Hulm, E.</creatorcontrib><creatorcontrib>Hume, C. C.</creatorcontrib><creatorcontrib>Jackson, R.</creatorcontrib><creatorcontrib>Junyent, F.</creatorcontrib><creatorcontrib>Kennedy, A.</creatorcontrib><creatorcontrib>Kumjian, M.</creatorcontrib><creatorcontrib>Levin, E. T.</creatorcontrib><creatorcontrib>Lundquist, J. D.</creatorcontrib><creatorcontrib>O’Brien, J.</creatorcontrib><creatorcontrib>Raleigh, M. S.</creatorcontrib><creatorcontrib>Reithel, J.</creatorcontrib><creatorcontrib>Rhoades, A.</creatorcontrib><creatorcontrib>Rittger, K.</creatorcontrib><creatorcontrib>Rudisill, W.</creatorcontrib><creatorcontrib>Sherman, Z.</creatorcontrib><creatorcontrib>Siirila-Woodburn, E.</creatorcontrib><creatorcontrib>Skiles, S. M.</creatorcontrib><creatorcontrib>Smith, J. N.</creatorcontrib><creatorcontrib>Sullivan, R. C.</creatorcontrib><creatorcontrib>Theisen, A.</creatorcontrib><creatorcontrib>Tuftedal, M.</creatorcontrib><creatorcontrib>Varble, A. C.</creatorcontrib><creatorcontrib>Wiedlea, A.</creatorcontrib><creatorcontrib>Wielandt, S.</creatorcontrib><creatorcontrib>Williams, K.</creatorcontrib><creatorcontrib>Xu, Z.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>The Surface Atmosphere Integrated Field Laboratory (SAIL) Campaign</title><title>Bulletin of the American Meteorological Society</title><description>The science of mountainous hydrology spans the atmosphere through the bedrock and inherently crosses physical and disciplinary boundaries: land-atmosphere interactions in complex terrain enhance clouds and precipitation, while watersheds retain and release water over a large range of spatial and temporal scales. Limited observations in complex terrain challenge efforts to improve predictive models of the hydrology in the face of rapid changes. The Upper Colorado River exemplifies these challenges, especially with ongoing mismatches between precipitation, snowpack, and discharge. Consequently, the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) user facility has deployed an observatory to the East River Watershed near Crested Butte, Colorado between September 2021 and June 2023 to measure the main atmospheric drivers of water resources, including precipitation, clouds, winds, aerosols, radiation, temperature and humidity. This effort, called the Surface Atmosphere Integrated Field Laboratory (SAIL), is also working in tandem with DOE-sponsored surface and subsurface hydrologists and other federal, state, and local partners. SAIL data can be benchmarks for model development by producing a wide range of observational information on precipitation and its associated processes, including those processes that impact snowpack sublimation and redistribution, aerosol direct radiative effects in the atmosphere and in the snowpack, aerosol impacts on clouds and precipitation, and processes controlling surface fluxes of energy and mass. Preliminary data from SAIL’s first year showcase the rich information content in SAIL’s many data-streams and support testing hypotheses that will ultimately improve scientific understanding and predictability of Upper Colorado River hydrology in 2023 and beyond.</description><subject>Aerosols/particulates</subject><subject>Atmosphere-land interaction</subject><subject>Complex terrain</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Hydrology</subject><subject>Measurements</subject><subject>Mountain meteorology</subject><issn>0003-0007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MDAw1gUS5hwMXMXFWSCusYUhJ4NTSEaqQnBpUVpicqqCY0lufnFBRmpRqoJnXklqelFiSWqKgltmak6Kgk9iUj6Qn19UqaAR7Ojpo6ngnJhbkJiZnsfDwJqWmFOcyguluRmU3FxDnD1084tLMuOLkzNLUpMzkvPz8lKTS-KNjIwsTQ3NjIlSBABRYjfo</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Feldman, D. R.</creator><creator>Aiken, A. C.</creator><creator>Boos, W. R.</creator><creator>Carroll, R. W. H.</creator><creator>Chandrasekar, V.</creator><creator>Collis, S.</creator><creator>Creamean, J. M.</creator><creator>de Boer, G.</creator><creator>Deems, J.</creator><creator>DeMott, P. J.</creator><creator>Fan, J.</creator><creator>Flores, A. N.</creator><creator>Gochis, D.</creator><creator>Grover, M.</creator><creator>Hill, T. J.</creator><creator>Hodshire, A.</creator><creator>Hulm, E.</creator><creator>Hume, C. C.</creator><creator>Jackson, R.</creator><creator>Junyent, F.</creator><creator>Kennedy, A.</creator><creator>Kumjian, M.</creator><creator>Levin, E. T.</creator><creator>Lundquist, J. D.</creator><creator>O’Brien, J.</creator><creator>Raleigh, M. S.</creator><creator>Reithel, J.</creator><creator>Rhoades, A.</creator><creator>Rittger, K.</creator><creator>Rudisill, W.</creator><creator>Sherman, Z.</creator><creator>Siirila-Woodburn, E.</creator><creator>Skiles, S. M.</creator><creator>Smith, J. N.</creator><creator>Sullivan, R. C.</creator><creator>Theisen, A.</creator><creator>Tuftedal, M.</creator><creator>Varble, A. C.</creator><creator>Wiedlea, A.</creator><creator>Wielandt, S.</creator><creator>Williams, K.</creator><creator>Xu, Z.</creator><general>American Meteorological Society</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20231201</creationdate><title>The Surface Atmosphere Integrated Field Laboratory (SAIL) Campaign</title><author>Feldman, D. R. ; Aiken, A. C. ; Boos, W. R. ; Carroll, R. W. H. ; Chandrasekar, V. ; Collis, S. ; Creamean, J. M. ; de Boer, G. ; Deems, J. ; DeMott, P. J. ; Fan, J. ; Flores, A. N. ; Gochis, D. ; Grover, M. ; Hill, T. J. ; Hodshire, A. ; Hulm, E. ; Hume, C. C. ; Jackson, R. ; Junyent, F. ; Kennedy, A. ; Kumjian, M. ; Levin, E. T. ; Lundquist, J. D. ; O’Brien, J. ; Raleigh, M. S. ; Reithel, J. ; Rhoades, A. ; Rittger, K. ; Rudisill, W. ; Sherman, Z. ; Siirila-Woodburn, E. ; Skiles, S. M. ; Smith, J. N. ; Sullivan, R. C. ; Theisen, A. ; Tuftedal, M. ; Varble, A. C. ; Wiedlea, A. ; Wielandt, S. ; Williams, K. ; Xu, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_22295163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols/particulates</topic><topic>Atmosphere-land interaction</topic><topic>Complex terrain</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Hydrology</topic><topic>Measurements</topic><topic>Mountain meteorology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feldman, D. R.</creatorcontrib><creatorcontrib>Aiken, A. C.</creatorcontrib><creatorcontrib>Boos, W. R.</creatorcontrib><creatorcontrib>Carroll, R. W. H.</creatorcontrib><creatorcontrib>Chandrasekar, V.</creatorcontrib><creatorcontrib>Collis, S.</creatorcontrib><creatorcontrib>Creamean, J. M.</creatorcontrib><creatorcontrib>de Boer, G.</creatorcontrib><creatorcontrib>Deems, J.</creatorcontrib><creatorcontrib>DeMott, P. J.</creatorcontrib><creatorcontrib>Fan, J.</creatorcontrib><creatorcontrib>Flores, A. N.</creatorcontrib><creatorcontrib>Gochis, D.</creatorcontrib><creatorcontrib>Grover, M.</creatorcontrib><creatorcontrib>Hill, T. J.</creatorcontrib><creatorcontrib>Hodshire, A.</creatorcontrib><creatorcontrib>Hulm, E.</creatorcontrib><creatorcontrib>Hume, C. C.</creatorcontrib><creatorcontrib>Jackson, R.</creatorcontrib><creatorcontrib>Junyent, F.</creatorcontrib><creatorcontrib>Kennedy, A.</creatorcontrib><creatorcontrib>Kumjian, M.</creatorcontrib><creatorcontrib>Levin, E. T.</creatorcontrib><creatorcontrib>Lundquist, J. D.</creatorcontrib><creatorcontrib>O’Brien, J.</creatorcontrib><creatorcontrib>Raleigh, M. S.</creatorcontrib><creatorcontrib>Reithel, J.</creatorcontrib><creatorcontrib>Rhoades, A.</creatorcontrib><creatorcontrib>Rittger, K.</creatorcontrib><creatorcontrib>Rudisill, W.</creatorcontrib><creatorcontrib>Sherman, Z.</creatorcontrib><creatorcontrib>Siirila-Woodburn, E.</creatorcontrib><creatorcontrib>Skiles, S. M.</creatorcontrib><creatorcontrib>Smith, J. N.</creatorcontrib><creatorcontrib>Sullivan, R. C.</creatorcontrib><creatorcontrib>Theisen, A.</creatorcontrib><creatorcontrib>Tuftedal, M.</creatorcontrib><creatorcontrib>Varble, A. C.</creatorcontrib><creatorcontrib>Wiedlea, A.</creatorcontrib><creatorcontrib>Wielandt, S.</creatorcontrib><creatorcontrib>Williams, K.</creatorcontrib><creatorcontrib>Xu, Z.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feldman, D. R.</au><au>Aiken, A. C.</au><au>Boos, W. R.</au><au>Carroll, R. W. H.</au><au>Chandrasekar, V.</au><au>Collis, S.</au><au>Creamean, J. M.</au><au>de Boer, G.</au><au>Deems, J.</au><au>DeMott, P. J.</au><au>Fan, J.</au><au>Flores, A. N.</au><au>Gochis, D.</au><au>Grover, M.</au><au>Hill, T. J.</au><au>Hodshire, A.</au><au>Hulm, E.</au><au>Hume, C. C.</au><au>Jackson, R.</au><au>Junyent, F.</au><au>Kennedy, A.</au><au>Kumjian, M.</au><au>Levin, E. T.</au><au>Lundquist, J. D.</au><au>O’Brien, J.</au><au>Raleigh, M. S.</au><au>Reithel, J.</au><au>Rhoades, A.</au><au>Rittger, K.</au><au>Rudisill, W.</au><au>Sherman, Z.</au><au>Siirila-Woodburn, E.</au><au>Skiles, S. M.</au><au>Smith, J. N.</au><au>Sullivan, R. C.</au><au>Theisen, A.</au><au>Tuftedal, M.</au><au>Varble, A. C.</au><au>Wiedlea, A.</au><au>Wielandt, S.</au><au>Williams, K.</au><au>Xu, Z.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Surface Atmosphere Integrated Field Laboratory (SAIL) Campaign</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>104</volume><issue>12</issue><issn>0003-0007</issn><abstract>The science of mountainous hydrology spans the atmosphere through the bedrock and inherently crosses physical and disciplinary boundaries: land-atmosphere interactions in complex terrain enhance clouds and precipitation, while watersheds retain and release water over a large range of spatial and temporal scales. Limited observations in complex terrain challenge efforts to improve predictive models of the hydrology in the face of rapid changes. The Upper Colorado River exemplifies these challenges, especially with ongoing mismatches between precipitation, snowpack, and discharge. Consequently, the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) user facility has deployed an observatory to the East River Watershed near Crested Butte, Colorado between September 2021 and June 2023 to measure the main atmospheric drivers of water resources, including precipitation, clouds, winds, aerosols, radiation, temperature and humidity. This effort, called the Surface Atmosphere Integrated Field Laboratory (SAIL), is also working in tandem with DOE-sponsored surface and subsurface hydrologists and other federal, state, and local partners. SAIL data can be benchmarks for model development by producing a wide range of observational information on precipitation and its associated processes, including those processes that impact snowpack sublimation and redistribution, aerosol direct radiative effects in the atmosphere and in the snowpack, aerosol impacts on clouds and precipitation, and processes controlling surface fluxes of energy and mass. Preliminary data from SAIL’s first year showcase the rich information content in SAIL’s many data-streams and support testing hypotheses that will ultimately improve scientific understanding and predictability of Upper Colorado River hydrology in 2023 and beyond.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 2023-12, Vol.104 (12)
issn 0003-0007
language eng
recordid cdi_osti_scitechconnect_2229516
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Aerosols/particulates
Atmosphere-land interaction
Complex terrain
ENVIRONMENTAL SCIENCES
Hydrology
Measurements
Mountain meteorology
title The Surface Atmosphere Integrated Field Laboratory (SAIL) Campaign
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Surface%20Atmosphere%20Integrated%20Field%20Laboratory%20(SAIL)%20Campaign&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Feldman,%20D.%20R.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2023-12-01&rft.volume=104&rft.issue=12&rft.issn=0003-0007&rft_id=info:doi/&rft_dat=%3Costi%3E2229516%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true