Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression

The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2013-12, Vol.273 (2), p.365-380
Hauptverfasser: Sharma, Deep Raj, Sunkaria, Aditya, Wani, Willayat Yousuf, Sharma, Reeta Kumari, Kandimalla, Ramesh J.L., Bal, Amanjit, Gill, Kiran Dip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 2
container_start_page 365
container_title Toxicology and applied pharmacology
container_volume 273
creator Sharma, Deep Raj
Sunkaria, Aditya
Wani, Willayat Yousuf
Sharma, Reeta Kumari
Kandimalla, Ramesh J.L.
Bal, Amanjit
Gill, Kiran Dip
description The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12weeks. After 12weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. •Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded subunits.•It decreases the mtDNA copy number and mitochondrial content in rat brain.•It down-regulates the mRNA and protein levels of PGC-1α, NRF-1, NRF-2 and Tfam.•It also disturbs the mitochondrial or nuclear architecture of neurons.•Finally it also decreases mitochondrial number in HC and CS regions of rat brain.
doi_str_mv 10.1016/j.taap.2013.09.012
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22285516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041008X13004122</els_id><sourcerecordid>1627977628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-ca30ad80adca76bd67ffabbfccdb6b6d06e8fd277802e52c50547a5f671fb7933</originalsourceid><addsrcrecordid>eNp9kcGKFDEQhoMo7rj6Ah4kIAteeqyku5Nu8LIMugoLelDwFtJJxc3Q3RmT9LA-li_iM5lmRr15SAXCVz-p-gh5zmDLgInX-23W-rDlwOot9Ftg_AHZMOhFBXVdPyQbgIZVAN3XC_IkpT0A9E3DHpML3kDXMCE2ZLkel8nPfpmon-1i0NJw763O_og05Ygp0VKWMacCUIsmok6FmnwO5i7MNno90sGHbzhj8okevaZTsMtYMsJMg6OfbnYV-_WT4v1hzSuvT8kjp8eEz873Jfny7u3n3fvq9uPNh931bWWaRubK6Bq07coxWorBCumcHgZnjB3EICwI7JzlUnbAseWmhbaRunVCMjfIvq4vyctTbkjZq2R8RnNnwjyjyYpz3rUtE4V6daIOMXxfMGU1-WRwHPWMYUmKCS57KQXvCspPqIkhpYhOHaKfdPyhGKhVitqrVYpapSjoVZFSml6c85dhQvu35Y-FAlydAZ2MHl3Us_HpH9dB2zVtW7g3Jw7Lzo4e4zoSzkWaj-tENvj__eM3gMKt3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627977628</pqid></control><display><type>article</type><title>Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Sharma, Deep Raj ; Sunkaria, Aditya ; Wani, Willayat Yousuf ; Sharma, Reeta Kumari ; Kandimalla, Ramesh J.L. ; Bal, Amanjit ; Gill, Kiran Dip</creator><creatorcontrib>Sharma, Deep Raj ; Sunkaria, Aditya ; Wani, Willayat Yousuf ; Sharma, Reeta Kumari ; Kandimalla, Ramesh J.L. ; Bal, Amanjit ; Gill, Kiran Dip</creatorcontrib><description>The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12weeks. After 12weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. •Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded subunits.•It decreases the mtDNA copy number and mitochondrial content in rat brain.•It down-regulates the mRNA and protein levels of PGC-1α, NRF-1, NRF-2 and Tfam.•It also disturbs the mitochondrial or nuclear architecture of neurons.•Finally it also decreases mitochondrial number in HC and CS regions of rat brain.</description><identifier>ISSN: 0041-008X</identifier><identifier>EISSN: 1096-0333</identifier><identifier>DOI: 10.1016/j.taap.2013.09.012</identifier><identifier>PMID: 24084166</identifier><identifier>CODEN: TXAPA9</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; ALUMINIUM ; Aluminum - toxicity ; Animals ; ATP ; Biological and medical sciences ; Chemical and industrial products toxicology. Toxic occupational diseases ; CYTOCHROME OXIDASE ; DNA ; Electron transport chain ; Gene Expression Regulation - drug effects ; HIPPOCAMPUS ; Male ; Medical sciences ; MESSENGER-RNA ; Metals and various inorganic compounds ; MITOCHONDRIA ; Mitochondrial biogenesis ; Mitochondrial Turnover - drug effects ; Mitochondrial Turnover - physiology ; NERVE CELLS ; NERVOUS SYSTEM DISEASES ; Neurodegeneration ; Neurodegenerative Diseases - metabolism ; Neurodegenerative Diseases - pathology ; Neurodegenerative Diseases - physiopathology ; Oxidative Stress - drug effects ; Oxidative Stress - physiology ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; RATS ; Rats, Wistar ; Reactive oxygen species ; RECEPTORS ; Toxicology ; Transcription Factors - biosynthesis ; Transcription Factors - metabolism</subject><ispartof>Toxicology and applied pharmacology, 2013-12, Vol.273 (2), p.365-380</ispartof><rights>2013 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-ca30ad80adca76bd67ffabbfccdb6b6d06e8fd277802e52c50547a5f671fb7933</citedby><cites>FETCH-LOGICAL-c447t-ca30ad80adca76bd67ffabbfccdb6b6d06e8fd277802e52c50547a5f671fb7933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.taap.2013.09.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28058455$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24084166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22285516$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Deep Raj</creatorcontrib><creatorcontrib>Sunkaria, Aditya</creatorcontrib><creatorcontrib>Wani, Willayat Yousuf</creatorcontrib><creatorcontrib>Sharma, Reeta Kumari</creatorcontrib><creatorcontrib>Kandimalla, Ramesh J.L.</creatorcontrib><creatorcontrib>Bal, Amanjit</creatorcontrib><creatorcontrib>Gill, Kiran Dip</creatorcontrib><title>Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression</title><title>Toxicology and applied pharmacology</title><addtitle>Toxicol Appl Pharmacol</addtitle><description>The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12weeks. After 12weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. •Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded subunits.•It decreases the mtDNA copy number and mitochondrial content in rat brain.•It down-regulates the mRNA and protein levels of PGC-1α, NRF-1, NRF-2 and Tfam.•It also disturbs the mitochondrial or nuclear architecture of neurons.•Finally it also decreases mitochondrial number in HC and CS regions of rat brain.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ALUMINIUM</subject><subject>Aluminum - toxicity</subject><subject>Animals</subject><subject>ATP</subject><subject>Biological and medical sciences</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>CYTOCHROME OXIDASE</subject><subject>DNA</subject><subject>Electron transport chain</subject><subject>Gene Expression Regulation - drug effects</subject><subject>HIPPOCAMPUS</subject><subject>Male</subject><subject>Medical sciences</subject><subject>MESSENGER-RNA</subject><subject>Metals and various inorganic compounds</subject><subject>MITOCHONDRIA</subject><subject>Mitochondrial biogenesis</subject><subject>Mitochondrial Turnover - drug effects</subject><subject>Mitochondrial Turnover - physiology</subject><subject>NERVE CELLS</subject><subject>NERVOUS SYSTEM DISEASES</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative Diseases - metabolism</subject><subject>Neurodegenerative Diseases - pathology</subject><subject>Neurodegenerative Diseases - physiopathology</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - physiology</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>RATS</subject><subject>Rats, Wistar</subject><subject>Reactive oxygen species</subject><subject>RECEPTORS</subject><subject>Toxicology</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - metabolism</subject><issn>0041-008X</issn><issn>1096-0333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGKFDEQhoMo7rj6Ah4kIAteeqyku5Nu8LIMugoLelDwFtJJxc3Q3RmT9LA-li_iM5lmRr15SAXCVz-p-gh5zmDLgInX-23W-rDlwOot9Ftg_AHZMOhFBXVdPyQbgIZVAN3XC_IkpT0A9E3DHpML3kDXMCE2ZLkel8nPfpmon-1i0NJw763O_og05Ygp0VKWMacCUIsmok6FmnwO5i7MNno90sGHbzhj8okevaZTsMtYMsJMg6OfbnYV-_WT4v1hzSuvT8kjp8eEz873Jfny7u3n3fvq9uPNh931bWWaRubK6Bq07coxWorBCumcHgZnjB3EICwI7JzlUnbAseWmhbaRunVCMjfIvq4vyctTbkjZq2R8RnNnwjyjyYpz3rUtE4V6daIOMXxfMGU1-WRwHPWMYUmKCS57KQXvCspPqIkhpYhOHaKfdPyhGKhVitqrVYpapSjoVZFSml6c85dhQvu35Y-FAlydAZ2MHl3Us_HpH9dB2zVtW7g3Jw7Lzo4e4zoSzkWaj-tENvj__eM3gMKt3Q</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Sharma, Deep Raj</creator><creator>Sunkaria, Aditya</creator><creator>Wani, Willayat Yousuf</creator><creator>Sharma, Reeta Kumari</creator><creator>Kandimalla, Ramesh J.L.</creator><creator>Bal, Amanjit</creator><creator>Gill, Kiran Dip</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>OTOTI</scope></search><sort><creationdate>20131201</creationdate><title>Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression</title><author>Sharma, Deep Raj ; Sunkaria, Aditya ; Wani, Willayat Yousuf ; Sharma, Reeta Kumari ; Kandimalla, Ramesh J.L. ; Bal, Amanjit ; Gill, Kiran Dip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-ca30ad80adca76bd67ffabbfccdb6b6d06e8fd277802e52c50547a5f671fb7933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ALUMINIUM</topic><topic>Aluminum - toxicity</topic><topic>Animals</topic><topic>ATP</topic><topic>Biological and medical sciences</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>CYTOCHROME OXIDASE</topic><topic>DNA</topic><topic>Electron transport chain</topic><topic>Gene Expression Regulation - drug effects</topic><topic>HIPPOCAMPUS</topic><topic>Male</topic><topic>Medical sciences</topic><topic>MESSENGER-RNA</topic><topic>Metals and various inorganic compounds</topic><topic>MITOCHONDRIA</topic><topic>Mitochondrial biogenesis</topic><topic>Mitochondrial Turnover - drug effects</topic><topic>Mitochondrial Turnover - physiology</topic><topic>NERVE CELLS</topic><topic>NERVOUS SYSTEM DISEASES</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative Diseases - metabolism</topic><topic>Neurodegenerative Diseases - pathology</topic><topic>Neurodegenerative Diseases - physiopathology</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - physiology</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>RATS</topic><topic>Rats, Wistar</topic><topic>Reactive oxygen species</topic><topic>RECEPTORS</topic><topic>Toxicology</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Deep Raj</creatorcontrib><creatorcontrib>Sunkaria, Aditya</creatorcontrib><creatorcontrib>Wani, Willayat Yousuf</creatorcontrib><creatorcontrib>Sharma, Reeta Kumari</creatorcontrib><creatorcontrib>Kandimalla, Ramesh J.L.</creatorcontrib><creatorcontrib>Bal, Amanjit</creatorcontrib><creatorcontrib>Gill, Kiran Dip</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><jtitle>Toxicology and applied pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Deep Raj</au><au>Sunkaria, Aditya</au><au>Wani, Willayat Yousuf</au><au>Sharma, Reeta Kumari</au><au>Kandimalla, Ramesh J.L.</au><au>Bal, Amanjit</au><au>Gill, Kiran Dip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression</atitle><jtitle>Toxicology and applied pharmacology</jtitle><addtitle>Toxicol Appl Pharmacol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>273</volume><issue>2</issue><spage>365</spage><epage>380</epage><pages>365-380</pages><issn>0041-008X</issn><eissn>1096-0333</eissn><coden>TXAPA9</coden><abstract>The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12weeks. After 12weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. •Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded subunits.•It decreases the mtDNA copy number and mitochondrial content in rat brain.•It down-regulates the mRNA and protein levels of PGC-1α, NRF-1, NRF-2 and Tfam.•It also disturbs the mitochondrial or nuclear architecture of neurons.•Finally it also decreases mitochondrial number in HC and CS regions of rat brain.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>24084166</pmid><doi>10.1016/j.taap.2013.09.012</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-008X
ispartof Toxicology and applied pharmacology, 2013-12, Vol.273 (2), p.365-380
issn 0041-008X
1096-0333
language eng
recordid cdi_osti_scitechconnect_22285516
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects 60 APPLIED LIFE SCIENCES
ALUMINIUM
Aluminum - toxicity
Animals
ATP
Biological and medical sciences
Chemical and industrial products toxicology. Toxic occupational diseases
CYTOCHROME OXIDASE
DNA
Electron transport chain
Gene Expression Regulation - drug effects
HIPPOCAMPUS
Male
Medical sciences
MESSENGER-RNA
Metals and various inorganic compounds
MITOCHONDRIA
Mitochondrial biogenesis
Mitochondrial Turnover - drug effects
Mitochondrial Turnover - physiology
NERVE CELLS
NERVOUS SYSTEM DISEASES
Neurodegeneration
Neurodegenerative Diseases - metabolism
Neurodegenerative Diseases - pathology
Neurodegenerative Diseases - physiopathology
Oxidative Stress - drug effects
Oxidative Stress - physiology
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
RATS
Rats, Wistar
Reactive oxygen species
RECEPTORS
Toxicology
Transcription Factors - biosynthesis
Transcription Factors - metabolism
title Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminium%20induced%20oxidative%20stress%20results%20in%20decreased%20mitochondrial%20biogenesis%20via%20modulation%20of%20PGC-1%CE%B1%20expression&rft.jtitle=Toxicology%20and%20applied%20pharmacology&rft.au=Sharma,%20Deep%20Raj&rft.date=2013-12-01&rft.volume=273&rft.issue=2&rft.spage=365&rft.epage=380&rft.pages=365-380&rft.issn=0041-008X&rft.eissn=1096-0333&rft.coden=TXAPA9&rft_id=info:doi/10.1016/j.taap.2013.09.012&rft_dat=%3Cproquest_osti_%3E1627977628%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627977628&rft_id=info:pmid/24084166&rft_els_id=S0041008X13004122&rfr_iscdi=true