Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending
Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insuffi...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2024-04, Vol.29 (2), p.913-923 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 923 |
---|---|
container_issue | 2 |
container_start_page | 913 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 29 |
creator | Peterson, Brandon T. Hardin, Thomas J. Pomeroy, Armin W. Hopkins, Jonathan B. Clites, Tyler R. |
description | Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insufficient to ensure longevity. Stress-based design, which is the norm in conventional rolling- or sliding-contact bearing selection, allows for direct calculation of expected fatigue lifetime, as well as performance in acute overload scenarios. However, the principles that guide stress-based design for flexural bearings are distinct from those that govern contact bearings, and have not yet been clearly described. In this article, we present three physical principles that came to light as we applied stress-oriented finite element analysis to design x-pivots for large angular deformation and heavy tensile loads. Specifically, we describe cross-blade anticlastic effects, loading scenarios that can lead to buckling when the mechanism is in tension, and nonlinear stress effects that emerge in combined tension and bending. These principles have an outsized impact on the mechanism's stress profile, and are not well represented in existing x-pivot models. We also discuss ways to leverage gross mechanism geometry and blade profile to mitigate or avoid these effects. We expect that this work will help facilitate the design of x-pivots for applications in real-world mechatronic systems. |
doi_str_mv | 10.1109/TMECH.2023.3334994 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2228528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10342672</ieee_id><sourcerecordid>3040044176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-faf7aa8e0bf1dc6a8eeb0c1801b7beddef602d0b4e1fd705bbb9289bbeb2e1503</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRUKt_QDwEPW-dfLS7662un6AoWMFbSLKzGlmTmqSi_97UevA0w_C8w8xTFAcUxpRCczK_u2ivxwwYH3PORdOIjWKHNoKWQMXzZu6h5qUQfLJd7Mb4BgCCAt0phjb4GMvZl43kcsCvZVADebCfPkViHblD86pS8M4aMlssBmtUst7FU_KYAubgmYrYkXOM9sWR3gfS-ndtXZ7N0cWMEuU6coaus-5lr9jq1RBx_6-OiqfLi3l7Xd7eX920s9vScFqnsld9pVSNoHvamWnuUIOhNVBdaew67KfAOtACad9VMNFaN6xutEbNkE6Aj4qj9V4fk5XR2JTfMN45NEkyxuoJqzN0vIYWwX8sMSb55pfB5bskB5H9CFpNM8XWlFl5CtjLRbDvKnxLCnKlXv6qlyv18k99Dh2uQxYR_wW4YNOK8R-_i4GR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040044176</pqid></control><display><type>article</type><title>Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending</title><source>IEEE Electronic Library (IEL)</source><creator>Peterson, Brandon T. ; Hardin, Thomas J. ; Pomeroy, Armin W. ; Hopkins, Jonathan B. ; Clites, Tyler R.</creator><creatorcontrib>Peterson, Brandon T. ; Hardin, Thomas J. ; Pomeroy, Armin W. ; Hopkins, Jonathan B. ; Clites, Tyler R.</creatorcontrib><description>Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insufficient to ensure longevity. Stress-based design, which is the norm in conventional rolling- or sliding-contact bearing selection, allows for direct calculation of expected fatigue lifetime, as well as performance in acute overload scenarios. However, the principles that guide stress-based design for flexural bearings are distinct from those that govern contact bearings, and have not yet been clearly described. In this article, we present three physical principles that came to light as we applied stress-oriented finite element analysis to design x-pivots for large angular deformation and heavy tensile loads. Specifically, we describe cross-blade anticlastic effects, loading scenarios that can lead to buckling when the mechanism is in tension, and nonlinear stress effects that emerge in combined tension and bending. These principles have an outsized impact on the mechanism's stress profile, and are not well represented in existing x-pivot models. We also discuss ways to leverage gross mechanism geometry and blade profile to mitigate or avoid these effects. We expect that this work will help facilitate the design of x-pivots for applications in real-world mechatronic systems.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3334994</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axes of rotation ; Bearings ; Bending ; Blades ; Compliant mechanisms ; cross-axis flexural pivots ; Deformation effects ; Finite element method ; Kinematics ; Load modeling ; Loading ; Mechatronics ; Overloading ; Pivots ; Predictive models ; Principles ; Stress ; stress-based design ; Tensile stress</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-04, Vol.29 (2), p.913-923</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-faf7aa8e0bf1dc6a8eeb0c1801b7beddef602d0b4e1fd705bbb9289bbeb2e1503</cites><orcidid>0000-0001-7754-4442 ; 0000-0003-4752-746X ; 0000-0002-3785-745X ; 0009-0007-0692-0536 ; 0000-0001-7183-0114 ; 000000023785745X ; 0000000177544442 ; 000000034752746X ; 0009000706920536 ; 0000000171830114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10342672$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2228528$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, Brandon T.</creatorcontrib><creatorcontrib>Hardin, Thomas J.</creatorcontrib><creatorcontrib>Pomeroy, Armin W.</creatorcontrib><creatorcontrib>Hopkins, Jonathan B.</creatorcontrib><creatorcontrib>Clites, Tyler R.</creatorcontrib><title>Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insufficient to ensure longevity. Stress-based design, which is the norm in conventional rolling- or sliding-contact bearing selection, allows for direct calculation of expected fatigue lifetime, as well as performance in acute overload scenarios. However, the principles that guide stress-based design for flexural bearings are distinct from those that govern contact bearings, and have not yet been clearly described. In this article, we present three physical principles that came to light as we applied stress-oriented finite element analysis to design x-pivots for large angular deformation and heavy tensile loads. Specifically, we describe cross-blade anticlastic effects, loading scenarios that can lead to buckling when the mechanism is in tension, and nonlinear stress effects that emerge in combined tension and bending. These principles have an outsized impact on the mechanism's stress profile, and are not well represented in existing x-pivot models. We also discuss ways to leverage gross mechanism geometry and blade profile to mitigate or avoid these effects. We expect that this work will help facilitate the design of x-pivots for applications in real-world mechatronic systems.</description><subject>Axes of rotation</subject><subject>Bearings</subject><subject>Bending</subject><subject>Blades</subject><subject>Compliant mechanisms</subject><subject>cross-axis flexural pivots</subject><subject>Deformation effects</subject><subject>Finite element method</subject><subject>Kinematics</subject><subject>Load modeling</subject><subject>Loading</subject><subject>Mechatronics</subject><subject>Overloading</subject><subject>Pivots</subject><subject>Predictive models</subject><subject>Principles</subject><subject>Stress</subject><subject>stress-based design</subject><subject>Tensile stress</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhhdRUKt_QDwEPW-dfLS7662un6AoWMFbSLKzGlmTmqSi_97UevA0w_C8w8xTFAcUxpRCczK_u2ivxwwYH3PORdOIjWKHNoKWQMXzZu6h5qUQfLJd7Mb4BgCCAt0phjb4GMvZl43kcsCvZVADebCfPkViHblD86pS8M4aMlssBmtUst7FU_KYAubgmYrYkXOM9sWR3gfS-ndtXZ7N0cWMEuU6coaus-5lr9jq1RBx_6-OiqfLi3l7Xd7eX920s9vScFqnsld9pVSNoHvamWnuUIOhNVBdaew67KfAOtACad9VMNFaN6xutEbNkE6Aj4qj9V4fk5XR2JTfMN45NEkyxuoJqzN0vIYWwX8sMSb55pfB5bskB5H9CFpNM8XWlFl5CtjLRbDvKnxLCnKlXv6qlyv18k99Dh2uQxYR_wW4YNOK8R-_i4GR</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Peterson, Brandon T.</creator><creator>Hardin, Thomas J.</creator><creator>Pomeroy, Armin W.</creator><creator>Hopkins, Jonathan B.</creator><creator>Clites, Tyler R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7754-4442</orcidid><orcidid>https://orcid.org/0000-0003-4752-746X</orcidid><orcidid>https://orcid.org/0000-0002-3785-745X</orcidid><orcidid>https://orcid.org/0009-0007-0692-0536</orcidid><orcidid>https://orcid.org/0000-0001-7183-0114</orcidid><orcidid>https://orcid.org/000000023785745X</orcidid><orcidid>https://orcid.org/0000000177544442</orcidid><orcidid>https://orcid.org/000000034752746X</orcidid><orcidid>https://orcid.org/0009000706920536</orcidid><orcidid>https://orcid.org/0000000171830114</orcidid></search><sort><creationdate>202404</creationdate><title>Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending</title><author>Peterson, Brandon T. ; Hardin, Thomas J. ; Pomeroy, Armin W. ; Hopkins, Jonathan B. ; Clites, Tyler R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-faf7aa8e0bf1dc6a8eeb0c1801b7beddef602d0b4e1fd705bbb9289bbeb2e1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Axes of rotation</topic><topic>Bearings</topic><topic>Bending</topic><topic>Blades</topic><topic>Compliant mechanisms</topic><topic>cross-axis flexural pivots</topic><topic>Deformation effects</topic><topic>Finite element method</topic><topic>Kinematics</topic><topic>Load modeling</topic><topic>Loading</topic><topic>Mechatronics</topic><topic>Overloading</topic><topic>Pivots</topic><topic>Predictive models</topic><topic>Principles</topic><topic>Stress</topic><topic>stress-based design</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Brandon T.</creatorcontrib><creatorcontrib>Hardin, Thomas J.</creatorcontrib><creatorcontrib>Pomeroy, Armin W.</creatorcontrib><creatorcontrib>Hopkins, Jonathan B.</creatorcontrib><creatorcontrib>Clites, Tyler R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Brandon T.</au><au>Hardin, Thomas J.</au><au>Pomeroy, Armin W.</au><au>Hopkins, Jonathan B.</au><au>Clites, Tyler R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-04</date><risdate>2024</risdate><volume>29</volume><issue>2</issue><spage>913</spage><epage>923</epage><pages>913-923</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insufficient to ensure longevity. Stress-based design, which is the norm in conventional rolling- or sliding-contact bearing selection, allows for direct calculation of expected fatigue lifetime, as well as performance in acute overload scenarios. However, the principles that guide stress-based design for flexural bearings are distinct from those that govern contact bearings, and have not yet been clearly described. In this article, we present three physical principles that came to light as we applied stress-oriented finite element analysis to design x-pivots for large angular deformation and heavy tensile loads. Specifically, we describe cross-blade anticlastic effects, loading scenarios that can lead to buckling when the mechanism is in tension, and nonlinear stress effects that emerge in combined tension and bending. These principles have an outsized impact on the mechanism's stress profile, and are not well represented in existing x-pivot models. We also discuss ways to leverage gross mechanism geometry and blade profile to mitigate or avoid these effects. We expect that this work will help facilitate the design of x-pivots for applications in real-world mechatronic systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3334994</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7754-4442</orcidid><orcidid>https://orcid.org/0000-0003-4752-746X</orcidid><orcidid>https://orcid.org/0000-0002-3785-745X</orcidid><orcidid>https://orcid.org/0009-0007-0692-0536</orcidid><orcidid>https://orcid.org/0000-0001-7183-0114</orcidid><orcidid>https://orcid.org/000000023785745X</orcidid><orcidid>https://orcid.org/0000000177544442</orcidid><orcidid>https://orcid.org/000000034752746X</orcidid><orcidid>https://orcid.org/0009000706920536</orcidid><orcidid>https://orcid.org/0000000171830114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-04, Vol.29 (2), p.913-923 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_osti_scitechconnect_2228528 |
source | IEEE Electronic Library (IEL) |
subjects | Axes of rotation Bearings Bending Blades Compliant mechanisms cross-axis flexural pivots Deformation effects Finite element method Kinematics Load modeling Loading Mechatronics Overloading Pivots Predictive models Principles Stress stress-based design Tensile stress |
title | Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Axis%20Flexural%20Pivots%20in%20Mechatronic%20Applications:%20Stress-Based%20Design%20for%20Combined%20Tension%20and%20Bending&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Peterson,%20Brandon%20T.&rft.date=2024-04&rft.volume=29&rft.issue=2&rft.spage=913&rft.epage=923&rft.pages=913-923&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3334994&rft_dat=%3Cproquest_osti_%3E3040044176%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040044176&rft_id=info:pmid/&rft_ieee_id=10342672&rfr_iscdi=true |