Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending

Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insuffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2024-04, Vol.29 (2), p.913-923
Hauptverfasser: Peterson, Brandon T., Hardin, Thomas J., Pomeroy, Armin W., Hopkins, Jonathan B., Clites, Tyler R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 923
container_issue 2
container_start_page 913
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator Peterson, Brandon T.
Hardin, Thomas J.
Pomeroy, Armin W.
Hopkins, Jonathan B.
Clites, Tyler R.
description Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insufficient to ensure longevity. Stress-based design, which is the norm in conventional rolling- or sliding-contact bearing selection, allows for direct calculation of expected fatigue lifetime, as well as performance in acute overload scenarios. However, the principles that guide stress-based design for flexural bearings are distinct from those that govern contact bearings, and have not yet been clearly described. In this article, we present three physical principles that came to light as we applied stress-oriented finite element analysis to design x-pivots for large angular deformation and heavy tensile loads. Specifically, we describe cross-blade anticlastic effects, loading scenarios that can lead to buckling when the mechanism is in tension, and nonlinear stress effects that emerge in combined tension and bending. These principles have an outsized impact on the mechanism's stress profile, and are not well represented in existing x-pivot models. We also discuss ways to leverage gross mechanism geometry and blade profile to mitigate or avoid these effects. We expect that this work will help facilitate the design of x-pivots for applications in real-world mechatronic systems.
doi_str_mv 10.1109/TMECH.2023.3334994
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2228528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10342672</ieee_id><sourcerecordid>3040044176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-faf7aa8e0bf1dc6a8eeb0c1801b7beddef602d0b4e1fd705bbb9289bbeb2e1503</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRUKt_QDwEPW-dfLS7662un6AoWMFbSLKzGlmTmqSi_97UevA0w_C8w8xTFAcUxpRCczK_u2ivxwwYH3PORdOIjWKHNoKWQMXzZu6h5qUQfLJd7Mb4BgCCAt0phjb4GMvZl43kcsCvZVADebCfPkViHblD86pS8M4aMlssBmtUst7FU_KYAubgmYrYkXOM9sWR3gfS-ndtXZ7N0cWMEuU6coaus-5lr9jq1RBx_6-OiqfLi3l7Xd7eX920s9vScFqnsld9pVSNoHvamWnuUIOhNVBdaew67KfAOtACad9VMNFaN6xutEbNkE6Aj4qj9V4fk5XR2JTfMN45NEkyxuoJqzN0vIYWwX8sMSb55pfB5bskB5H9CFpNM8XWlFl5CtjLRbDvKnxLCnKlXv6qlyv18k99Dh2uQxYR_wW4YNOK8R-_i4GR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040044176</pqid></control><display><type>article</type><title>Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending</title><source>IEEE Electronic Library (IEL)</source><creator>Peterson, Brandon T. ; Hardin, Thomas J. ; Pomeroy, Armin W. ; Hopkins, Jonathan B. ; Clites, Tyler R.</creator><creatorcontrib>Peterson, Brandon T. ; Hardin, Thomas J. ; Pomeroy, Armin W. ; Hopkins, Jonathan B. ; Clites, Tyler R.</creatorcontrib><description>Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insufficient to ensure longevity. Stress-based design, which is the norm in conventional rolling- or sliding-contact bearing selection, allows for direct calculation of expected fatigue lifetime, as well as performance in acute overload scenarios. However, the principles that guide stress-based design for flexural bearings are distinct from those that govern contact bearings, and have not yet been clearly described. In this article, we present three physical principles that came to light as we applied stress-oriented finite element analysis to design x-pivots for large angular deformation and heavy tensile loads. Specifically, we describe cross-blade anticlastic effects, loading scenarios that can lead to buckling when the mechanism is in tension, and nonlinear stress effects that emerge in combined tension and bending. These principles have an outsized impact on the mechanism's stress profile, and are not well represented in existing x-pivot models. We also discuss ways to leverage gross mechanism geometry and blade profile to mitigate or avoid these effects. We expect that this work will help facilitate the design of x-pivots for applications in real-world mechatronic systems.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3334994</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axes of rotation ; Bearings ; Bending ; Blades ; Compliant mechanisms ; cross-axis flexural pivots ; Deformation effects ; Finite element method ; Kinematics ; Load modeling ; Loading ; Mechatronics ; Overloading ; Pivots ; Predictive models ; Principles ; Stress ; stress-based design ; Tensile stress</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-04, Vol.29 (2), p.913-923</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-faf7aa8e0bf1dc6a8eeb0c1801b7beddef602d0b4e1fd705bbb9289bbeb2e1503</cites><orcidid>0000-0001-7754-4442 ; 0000-0003-4752-746X ; 0000-0002-3785-745X ; 0009-0007-0692-0536 ; 0000-0001-7183-0114 ; 000000023785745X ; 0000000177544442 ; 000000034752746X ; 0009000706920536 ; 0000000171830114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10342672$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2228528$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, Brandon T.</creatorcontrib><creatorcontrib>Hardin, Thomas J.</creatorcontrib><creatorcontrib>Pomeroy, Armin W.</creatorcontrib><creatorcontrib>Hopkins, Jonathan B.</creatorcontrib><creatorcontrib>Clites, Tyler R.</creatorcontrib><title>Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insufficient to ensure longevity. Stress-based design, which is the norm in conventional rolling- or sliding-contact bearing selection, allows for direct calculation of expected fatigue lifetime, as well as performance in acute overload scenarios. However, the principles that guide stress-based design for flexural bearings are distinct from those that govern contact bearings, and have not yet been clearly described. In this article, we present three physical principles that came to light as we applied stress-oriented finite element analysis to design x-pivots for large angular deformation and heavy tensile loads. Specifically, we describe cross-blade anticlastic effects, loading scenarios that can lead to buckling when the mechanism is in tension, and nonlinear stress effects that emerge in combined tension and bending. These principles have an outsized impact on the mechanism's stress profile, and are not well represented in existing x-pivot models. We also discuss ways to leverage gross mechanism geometry and blade profile to mitigate or avoid these effects. We expect that this work will help facilitate the design of x-pivots for applications in real-world mechatronic systems.</description><subject>Axes of rotation</subject><subject>Bearings</subject><subject>Bending</subject><subject>Blades</subject><subject>Compliant mechanisms</subject><subject>cross-axis flexural pivots</subject><subject>Deformation effects</subject><subject>Finite element method</subject><subject>Kinematics</subject><subject>Load modeling</subject><subject>Loading</subject><subject>Mechatronics</subject><subject>Overloading</subject><subject>Pivots</subject><subject>Predictive models</subject><subject>Principles</subject><subject>Stress</subject><subject>stress-based design</subject><subject>Tensile stress</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhhdRUKt_QDwEPW-dfLS7662un6AoWMFbSLKzGlmTmqSi_97UevA0w_C8w8xTFAcUxpRCczK_u2ivxwwYH3PORdOIjWKHNoKWQMXzZu6h5qUQfLJd7Mb4BgCCAt0phjb4GMvZl43kcsCvZVADebCfPkViHblD86pS8M4aMlssBmtUst7FU_KYAubgmYrYkXOM9sWR3gfS-ndtXZ7N0cWMEuU6coaus-5lr9jq1RBx_6-OiqfLi3l7Xd7eX920s9vScFqnsld9pVSNoHvamWnuUIOhNVBdaew67KfAOtACad9VMNFaN6xutEbNkE6Aj4qj9V4fk5XR2JTfMN45NEkyxuoJqzN0vIYWwX8sMSb55pfB5bskB5H9CFpNM8XWlFl5CtjLRbDvKnxLCnKlXv6qlyv18k99Dh2uQxYR_wW4YNOK8R-_i4GR</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Peterson, Brandon T.</creator><creator>Hardin, Thomas J.</creator><creator>Pomeroy, Armin W.</creator><creator>Hopkins, Jonathan B.</creator><creator>Clites, Tyler R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7754-4442</orcidid><orcidid>https://orcid.org/0000-0003-4752-746X</orcidid><orcidid>https://orcid.org/0000-0002-3785-745X</orcidid><orcidid>https://orcid.org/0009-0007-0692-0536</orcidid><orcidid>https://orcid.org/0000-0001-7183-0114</orcidid><orcidid>https://orcid.org/000000023785745X</orcidid><orcidid>https://orcid.org/0000000177544442</orcidid><orcidid>https://orcid.org/000000034752746X</orcidid><orcidid>https://orcid.org/0009000706920536</orcidid><orcidid>https://orcid.org/0000000171830114</orcidid></search><sort><creationdate>202404</creationdate><title>Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending</title><author>Peterson, Brandon T. ; Hardin, Thomas J. ; Pomeroy, Armin W. ; Hopkins, Jonathan B. ; Clites, Tyler R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-faf7aa8e0bf1dc6a8eeb0c1801b7beddef602d0b4e1fd705bbb9289bbeb2e1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Axes of rotation</topic><topic>Bearings</topic><topic>Bending</topic><topic>Blades</topic><topic>Compliant mechanisms</topic><topic>cross-axis flexural pivots</topic><topic>Deformation effects</topic><topic>Finite element method</topic><topic>Kinematics</topic><topic>Load modeling</topic><topic>Loading</topic><topic>Mechatronics</topic><topic>Overloading</topic><topic>Pivots</topic><topic>Predictive models</topic><topic>Principles</topic><topic>Stress</topic><topic>stress-based design</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Brandon T.</creatorcontrib><creatorcontrib>Hardin, Thomas J.</creatorcontrib><creatorcontrib>Pomeroy, Armin W.</creatorcontrib><creatorcontrib>Hopkins, Jonathan B.</creatorcontrib><creatorcontrib>Clites, Tyler R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Brandon T.</au><au>Hardin, Thomas J.</au><au>Pomeroy, Armin W.</au><au>Hopkins, Jonathan B.</au><au>Clites, Tyler R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-04</date><risdate>2024</risdate><volume>29</volume><issue>2</issue><spage>913</spage><epage>923</epage><pages>913-923</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Cross-axis flexural pivots (x-pivots) hold immense promise as precise, frictionless bearing elements in mechatronic systems. In real-world settings, where bearings are called upon to bear nontrivial loads orthogonal to the axis of rotation, kinematic and stiffness-based design approaches are insufficient to ensure longevity. Stress-based design, which is the norm in conventional rolling- or sliding-contact bearing selection, allows for direct calculation of expected fatigue lifetime, as well as performance in acute overload scenarios. However, the principles that guide stress-based design for flexural bearings are distinct from those that govern contact bearings, and have not yet been clearly described. In this article, we present three physical principles that came to light as we applied stress-oriented finite element analysis to design x-pivots for large angular deformation and heavy tensile loads. Specifically, we describe cross-blade anticlastic effects, loading scenarios that can lead to buckling when the mechanism is in tension, and nonlinear stress effects that emerge in combined tension and bending. These principles have an outsized impact on the mechanism's stress profile, and are not well represented in existing x-pivot models. We also discuss ways to leverage gross mechanism geometry and blade profile to mitigate or avoid these effects. We expect that this work will help facilitate the design of x-pivots for applications in real-world mechatronic systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3334994</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7754-4442</orcidid><orcidid>https://orcid.org/0000-0003-4752-746X</orcidid><orcidid>https://orcid.org/0000-0002-3785-745X</orcidid><orcidid>https://orcid.org/0009-0007-0692-0536</orcidid><orcidid>https://orcid.org/0000-0001-7183-0114</orcidid><orcidid>https://orcid.org/000000023785745X</orcidid><orcidid>https://orcid.org/0000000177544442</orcidid><orcidid>https://orcid.org/000000034752746X</orcidid><orcidid>https://orcid.org/0009000706920536</orcidid><orcidid>https://orcid.org/0000000171830114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-04, Vol.29 (2), p.913-923
issn 1083-4435
1941-014X
language eng
recordid cdi_osti_scitechconnect_2228528
source IEEE Electronic Library (IEL)
subjects Axes of rotation
Bearings
Bending
Blades
Compliant mechanisms
cross-axis flexural pivots
Deformation effects
Finite element method
Kinematics
Load modeling
Loading
Mechatronics
Overloading
Pivots
Predictive models
Principles
Stress
stress-based design
Tensile stress
title Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Axis%20Flexural%20Pivots%20in%20Mechatronic%20Applications:%20Stress-Based%20Design%20for%20Combined%20Tension%20and%20Bending&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Peterson,%20Brandon%20T.&rft.date=2024-04&rft.volume=29&rft.issue=2&rft.spage=913&rft.epage=923&rft.pages=913-923&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3334994&rft_dat=%3Cproquest_osti_%3E3040044176%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040044176&rft_id=info:pmid/&rft_ieee_id=10342672&rfr_iscdi=true