Morphology and Curie temperature engineering in crystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films on Si by pulsed laser deposition

Of all the colossal magnetoresistant manganites, La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) exhibits magnetic and electronic state transitions above room temperature, and therefore holds immense technological potential in spintronic devices and hybrid heterojunctions. As the first step towards this goa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-01, Vol.115 (3)
Hauptverfasser: Nori, Rajashree, Ganguly, U., Ravi Chandra Raju, N., Pinto, R., Ramgopal Rao, V., Kale, S. N., Sutar, D. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of applied physics
container_volume 115
creator Nori, Rajashree
Ganguly, U.
Ravi Chandra Raju, N.
Pinto, R.
Ramgopal Rao, V.
Kale, S. N.
Sutar, D. S.
description Of all the colossal magnetoresistant manganites, La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) exhibits magnetic and electronic state transitions above room temperature, and therefore holds immense technological potential in spintronic devices and hybrid heterojunctions. As the first step towards this goal, it needs to be integrated with silicon via a well-defined process that provides morphology and phase control, along with reproducibility. This work demonstrates the development of pulsed laser deposition (PLD) process parameter regimes for dense and columnar morphology LSMO films directly on Si. These regimes are postulated on the foundations of a pressure-distance scaling law and their limits are defined post experimental validation. The laser spot size is seen to play an important role in tandem with the pressure-distance scaling law to provide morphology control during LSMO deposition on lattice-mismatched Si substrate. Additionally, phase stability of the deposited films in these regimes is evaluated through magnetometry measurements and the Curie temperatures obtained are 349 K (for dense morphology) and 355 K (for columnar morphology)—the highest reported for LSMO films on Si so far. X-ray diffraction studies on phase evolution with variation in laser energy density and substrate temperature reveals the emergence of texture. Quantitative limits for all the key PLD process parameters are demonstrated in order enable morphological and structural engineering of LSMO films deposited directly on Si. These results are expected to boost the realization of top-down and bottom-up LSMO device architectures on the Si platform for a variety of applications.
doi_str_mv 10.1063/1.4862909
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22275682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22275682</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_222756823</originalsourceid><addsrcrecordid>eNqNirtOwzAUhi0EEuEy8AZHYk7whVw8VyAGKoayV65zmh7k2pHtDBHKxItToT4A0_fp-3_GHgSvBG_Uk6ieu0Zqri9YIXiny7au-SUrOJei7HSrr9lNSl-cC9EpXbCfdYjjIbgwzGB8D6spEkLG44jR5CkioB_II0byA5AHG-eUjXOnBu_mO0074FW7bOJZ1bL2H3-uFtiTOyYIHjYEuxnGySXswZmEEXocQ6JMwd-xq705Lfdn3rLH15fP1VsZUqZtspTRHmzwHm3eSinbuumk-t_rFyHUVr4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphology and Curie temperature engineering in crystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films on Si by pulsed laser deposition</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nori, Rajashree ; Ganguly, U. ; Ravi Chandra Raju, N. ; Pinto, R. ; Ramgopal Rao, V. ; Kale, S. N. ; Sutar, D. S.</creator><creatorcontrib>Nori, Rajashree ; Ganguly, U. ; Ravi Chandra Raju, N. ; Pinto, R. ; Ramgopal Rao, V. ; Kale, S. N. ; Sutar, D. S.</creatorcontrib><description>Of all the colossal magnetoresistant manganites, La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) exhibits magnetic and electronic state transitions above room temperature, and therefore holds immense technological potential in spintronic devices and hybrid heterojunctions. As the first step towards this goal, it needs to be integrated with silicon via a well-defined process that provides morphology and phase control, along with reproducibility. This work demonstrates the development of pulsed laser deposition (PLD) process parameter regimes for dense and columnar morphology LSMO films directly on Si. These regimes are postulated on the foundations of a pressure-distance scaling law and their limits are defined post experimental validation. The laser spot size is seen to play an important role in tandem with the pressure-distance scaling law to provide morphology control during LSMO deposition on lattice-mismatched Si substrate. Additionally, phase stability of the deposited films in these regimes is evaluated through magnetometry measurements and the Curie temperatures obtained are 349 K (for dense morphology) and 355 K (for columnar morphology)—the highest reported for LSMO films on Si so far. X-ray diffraction studies on phase evolution with variation in laser energy density and substrate temperature reveals the emergence of texture. Quantitative limits for all the key PLD process parameters are demonstrated in order enable morphological and structural engineering of LSMO films deposited directly on Si. These results are expected to boost the realization of top-down and bottom-up LSMO device architectures on the Si platform for a variety of applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4862909</identifier><language>eng</language><publisher>United States</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTAL DEFECTS ; CURIE POINT ; ELECTRONIC STRUCTURE ; ENERGY BEAM DEPOSITION ; ENERGY DENSITY ; HETEROJUNCTIONS ; LANTHANUM COMPOUNDS ; LASER RADIATION ; MANGANATES ; MORPHOLOGY ; PHASE STABILITY ; PULSED IRRADIATION ; SCALING LAWS ; SILICON ; STRONTIUM COMPOUNDS ; SUBSTRATES ; TEMPERATURE RANGE 0273-0400 K ; TEXTURE ; THIN FILMS ; X-RAY DIFFRACTION</subject><ispartof>Journal of applied physics, 2014-01, Vol.115 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22275682$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nori, Rajashree</creatorcontrib><creatorcontrib>Ganguly, U.</creatorcontrib><creatorcontrib>Ravi Chandra Raju, N.</creatorcontrib><creatorcontrib>Pinto, R.</creatorcontrib><creatorcontrib>Ramgopal Rao, V.</creatorcontrib><creatorcontrib>Kale, S. N.</creatorcontrib><creatorcontrib>Sutar, D. S.</creatorcontrib><title>Morphology and Curie temperature engineering in crystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films on Si by pulsed laser deposition</title><title>Journal of applied physics</title><description>Of all the colossal magnetoresistant manganites, La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) exhibits magnetic and electronic state transitions above room temperature, and therefore holds immense technological potential in spintronic devices and hybrid heterojunctions. As the first step towards this goal, it needs to be integrated with silicon via a well-defined process that provides morphology and phase control, along with reproducibility. This work demonstrates the development of pulsed laser deposition (PLD) process parameter regimes for dense and columnar morphology LSMO films directly on Si. These regimes are postulated on the foundations of a pressure-distance scaling law and their limits are defined post experimental validation. The laser spot size is seen to play an important role in tandem with the pressure-distance scaling law to provide morphology control during LSMO deposition on lattice-mismatched Si substrate. Additionally, phase stability of the deposited films in these regimes is evaluated through magnetometry measurements and the Curie temperatures obtained are 349 K (for dense morphology) and 355 K (for columnar morphology)—the highest reported for LSMO films on Si so far. X-ray diffraction studies on phase evolution with variation in laser energy density and substrate temperature reveals the emergence of texture. Quantitative limits for all the key PLD process parameters are demonstrated in order enable morphological and structural engineering of LSMO films deposited directly on Si. These results are expected to boost the realization of top-down and bottom-up LSMO device architectures on the Si platform for a variety of applications.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTAL DEFECTS</subject><subject>CURIE POINT</subject><subject>ELECTRONIC STRUCTURE</subject><subject>ENERGY BEAM DEPOSITION</subject><subject>ENERGY DENSITY</subject><subject>HETEROJUNCTIONS</subject><subject>LANTHANUM COMPOUNDS</subject><subject>LASER RADIATION</subject><subject>MANGANATES</subject><subject>MORPHOLOGY</subject><subject>PHASE STABILITY</subject><subject>PULSED IRRADIATION</subject><subject>SCALING LAWS</subject><subject>SILICON</subject><subject>STRONTIUM COMPOUNDS</subject><subject>SUBSTRATES</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>TEXTURE</subject><subject>THIN FILMS</subject><subject>X-RAY DIFFRACTION</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNirtOwzAUhi0EEuEy8AZHYk7whVw8VyAGKoayV65zmh7k2pHtDBHKxItToT4A0_fp-3_GHgSvBG_Uk6ieu0Zqri9YIXiny7au-SUrOJei7HSrr9lNSl-cC9EpXbCfdYjjIbgwzGB8D6spEkLG44jR5CkioB_II0byA5AHG-eUjXOnBu_mO0074FW7bOJZ1bL2H3-uFtiTOyYIHjYEuxnGySXswZmEEXocQ6JMwd-xq705Lfdn3rLH15fP1VsZUqZtspTRHmzwHm3eSinbuumk-t_rFyHUVr4</recordid><startdate>20140121</startdate><enddate>20140121</enddate><creator>Nori, Rajashree</creator><creator>Ganguly, U.</creator><creator>Ravi Chandra Raju, N.</creator><creator>Pinto, R.</creator><creator>Ramgopal Rao, V.</creator><creator>Kale, S. N.</creator><creator>Sutar, D. S.</creator><scope>OTOTI</scope></search><sort><creationdate>20140121</creationdate><title>Morphology and Curie temperature engineering in crystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films on Si by pulsed laser deposition</title><author>Nori, Rajashree ; Ganguly, U. ; Ravi Chandra Raju, N. ; Pinto, R. ; Ramgopal Rao, V. ; Kale, S. N. ; Sutar, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_222756823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTAL DEFECTS</topic><topic>CURIE POINT</topic><topic>ELECTRONIC STRUCTURE</topic><topic>ENERGY BEAM DEPOSITION</topic><topic>ENERGY DENSITY</topic><topic>HETEROJUNCTIONS</topic><topic>LANTHANUM COMPOUNDS</topic><topic>LASER RADIATION</topic><topic>MANGANATES</topic><topic>MORPHOLOGY</topic><topic>PHASE STABILITY</topic><topic>PULSED IRRADIATION</topic><topic>SCALING LAWS</topic><topic>SILICON</topic><topic>STRONTIUM COMPOUNDS</topic><topic>SUBSTRATES</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>TEXTURE</topic><topic>THIN FILMS</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nori, Rajashree</creatorcontrib><creatorcontrib>Ganguly, U.</creatorcontrib><creatorcontrib>Ravi Chandra Raju, N.</creatorcontrib><creatorcontrib>Pinto, R.</creatorcontrib><creatorcontrib>Ramgopal Rao, V.</creatorcontrib><creatorcontrib>Kale, S. N.</creatorcontrib><creatorcontrib>Sutar, D. S.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nori, Rajashree</au><au>Ganguly, U.</au><au>Ravi Chandra Raju, N.</au><au>Pinto, R.</au><au>Ramgopal Rao, V.</au><au>Kale, S. N.</au><au>Sutar, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology and Curie temperature engineering in crystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films on Si by pulsed laser deposition</atitle><jtitle>Journal of applied physics</jtitle><date>2014-01-21</date><risdate>2014</risdate><volume>115</volume><issue>3</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Of all the colossal magnetoresistant manganites, La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) exhibits magnetic and electronic state transitions above room temperature, and therefore holds immense technological potential in spintronic devices and hybrid heterojunctions. As the first step towards this goal, it needs to be integrated with silicon via a well-defined process that provides morphology and phase control, along with reproducibility. This work demonstrates the development of pulsed laser deposition (PLD) process parameter regimes for dense and columnar morphology LSMO films directly on Si. These regimes are postulated on the foundations of a pressure-distance scaling law and their limits are defined post experimental validation. The laser spot size is seen to play an important role in tandem with the pressure-distance scaling law to provide morphology control during LSMO deposition on lattice-mismatched Si substrate. Additionally, phase stability of the deposited films in these regimes is evaluated through magnetometry measurements and the Curie temperatures obtained are 349 K (for dense morphology) and 355 K (for columnar morphology)—the highest reported for LSMO films on Si so far. X-ray diffraction studies on phase evolution with variation in laser energy density and substrate temperature reveals the emergence of texture. Quantitative limits for all the key PLD process parameters are demonstrated in order enable morphological and structural engineering of LSMO films deposited directly on Si. These results are expected to boost the realization of top-down and bottom-up LSMO device architectures on the Si platform for a variety of applications.</abstract><cop>United States</cop><doi>10.1063/1.4862909</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-01, Vol.115 (3)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22275682
source AIP Journals Complete; Alma/SFX Local Collection
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTAL DEFECTS
CURIE POINT
ELECTRONIC STRUCTURE
ENERGY BEAM DEPOSITION
ENERGY DENSITY
HETEROJUNCTIONS
LANTHANUM COMPOUNDS
LASER RADIATION
MANGANATES
MORPHOLOGY
PHASE STABILITY
PULSED IRRADIATION
SCALING LAWS
SILICON
STRONTIUM COMPOUNDS
SUBSTRATES
TEMPERATURE RANGE 0273-0400 K
TEXTURE
THIN FILMS
X-RAY DIFFRACTION
title Morphology and Curie temperature engineering in crystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films on Si by pulsed laser deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20and%20Curie%20temperature%20engineering%20in%20crystalline%20La%7Bsub%200.7%7DSr%7Bsub%200.3%7DMnO%7Bsub%203%7D%20films%20on%20Si%20by%20pulsed%20laser%20deposition&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Nori,%20Rajashree&rft.date=2014-01-21&rft.volume=115&rft.issue=3&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4862909&rft_dat=%3Costi%3E22275682%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true