Ultraviolet laser patterning of porous silicon
This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-st...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-05, Vol.115 (18) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 115 |
creator | Vega, Fidel Peláez, Ramón J. Kuhn, Timo Afonso, Carmen N. Recio-Sánchez, Gonzalo Martín-Palma, Raúl J. |
description | This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-step and flexible approach to produce a large variety of patterns formed by alternate regions of almost untransformed nanoPS and regions where its surface has melted and transformed into Si nanoparticles (NPs). The role of laser fluence (5–80 mJ cm−2), and pattern period (6.3–16 μm) on pattern features and surface structuring are discussed. The results show that the diameter of Si NPs increases with fluence up to a saturation value of 75 nm for a fluence ≈40 mJ cm−2. In addition, the percentage of transformed to non-transformed region normalized to the pattern period follows similar fluence dependence regardless the period and thus becomes an excellent control parameter. This dependence is fitted within a thermal model that allows for predicting the in-depth profile of the pattern. The model assumes that transformation occurs whenever the laser-induced temperature increase reaches the melting temperature of nanoPS that has been found to be 0.7 of that of crystalline silicon for a porosity of around 79%. The role of thermal gradients across the pattern is discussed in the light of the experimental results and the calculated temperature profiles, and shows that the contribution of lateral thermal flow to melting is not significant for pattern periods ≥6.3 μm. |
doi_str_mv | 10.1063/1.4875378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22275573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127657647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-760239c59b9e7aa1703176d594d5aca31fc8d8b9cbdc13a92f9df441e2ba91783</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK4e_AcFTx66ziRNkxxl8QsWvLjnkKapZqlNTVLBf2-XXdjDMAw8PMP7EnKLsEKo2QOuKik4E_KMLBCkKgXncE4WABRLqYS6JFcp7QAQJVMLstr2OZpfH3qXi94kF4vR5Ozi4IfPInTFGGKYUpF8720YrslFZ_rkbo57SbbPTx_r13Lz_vK2ftyUltU0l6IGypTlqlFOGIMCGIq65apqubGGYWdlKxtlm9YiM4p2qu2qCh1tjEIh2ZLcHbwhZa-T9dnZr_n_4GzWlNI5lWAzhQfKpsnq6KyL1mQdjD8d-6EgqKYVBYSTeYzhZ3Ip612Y4jCH0RSpqLmoKzFT90dzDClF1-kx-m8T_zSC3hetUR-LZv-3-22o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127657647</pqid></control><display><type>article</type><title>Ultraviolet laser patterning of porous silicon</title><source>AIP Journals Complete</source><source>Recercat</source><source>Alma/SFX Local Collection</source><creator>Vega, Fidel ; Peláez, Ramón J. ; Kuhn, Timo ; Afonso, Carmen N. ; Recio-Sánchez, Gonzalo ; Martín-Palma, Raúl J.</creator><creatorcontrib>Vega, Fidel ; Peláez, Ramón J. ; Kuhn, Timo ; Afonso, Carmen N. ; Recio-Sánchez, Gonzalo ; Martín-Palma, Raúl J.</creatorcontrib><description>This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-step and flexible approach to produce a large variety of patterns formed by alternate regions of almost untransformed nanoPS and regions where its surface has melted and transformed into Si nanoparticles (NPs). The role of laser fluence (5–80 mJ cm−2), and pattern period (6.3–16 μm) on pattern features and surface structuring are discussed. The results show that the diameter of Si NPs increases with fluence up to a saturation value of 75 nm for a fluence ≈40 mJ cm−2. In addition, the percentage of transformed to non-transformed region normalized to the pattern period follows similar fluence dependence regardless the period and thus becomes an excellent control parameter. This dependence is fitted within a thermal model that allows for predicting the in-depth profile of the pattern. The model assumes that transformation occurs whenever the laser-induced temperature increase reaches the melting temperature of nanoPS that has been found to be 0.7 of that of crystalline silicon for a porosity of around 79%. The role of thermal gradients across the pattern is discussed in the light of the experimental results and the calculated temperature profiles, and shows that the contribution of lateral thermal flow to melting is not significant for pattern periods ≥6.3 μm.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4875378</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acronym ; Applied physics ; Dependence ; Enginyeria dels materials ; Enginyeria electrònica ; EXCIMER LASERS ; Excimers ; FABRICATION ; Fluence ; Física ; German Academic Exchange Service ; INTERFERENCE ; Lasers ; LAYERS ; Làser ; Làsers ; Materials nanoestructurals ; MATERIALS SCIENCE ; Mathematical models ; Melt temperature ; MELTING ; MELTING POINTS ; Nanoparticles ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanosilicon ; NANOSTRUCTURES ; Optoelectrònica ; PARTICLES ; Patterning ; POROSITY ; POROUS MATERIALS ; Porous silicon ; Pulse duration ; PULSED IRRADIATION ; Raigs ultraviolats ; SILICON ; Silicones ; Sponsor: DAAD ; SURFACES ; TEMPERATURE GRADIENTS ; Temperature profiles ; Thermal analysis ; Ultraviolet lasers ; ULTRAVIOLET RADIATION ; Àrees temàtiques de la UPC</subject><ispartof>Journal of applied physics, 2014-05, Vol.115 (18)</ispartof><rights>2014 AIP Publishing LLC.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-760239c59b9e7aa1703176d594d5aca31fc8d8b9cbdc13a92f9df441e2ba91783</citedby><cites>FETCH-LOGICAL-c362t-760239c59b9e7aa1703176d594d5aca31fc8d8b9cbdc13a92f9df441e2ba91783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,26979,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22275573$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vega, Fidel</creatorcontrib><creatorcontrib>Peláez, Ramón J.</creatorcontrib><creatorcontrib>Kuhn, Timo</creatorcontrib><creatorcontrib>Afonso, Carmen N.</creatorcontrib><creatorcontrib>Recio-Sánchez, Gonzalo</creatorcontrib><creatorcontrib>Martín-Palma, Raúl J.</creatorcontrib><title>Ultraviolet laser patterning of porous silicon</title><title>Journal of applied physics</title><description>This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-step and flexible approach to produce a large variety of patterns formed by alternate regions of almost untransformed nanoPS and regions where its surface has melted and transformed into Si nanoparticles (NPs). The role of laser fluence (5–80 mJ cm−2), and pattern period (6.3–16 μm) on pattern features and surface structuring are discussed. The results show that the diameter of Si NPs increases with fluence up to a saturation value of 75 nm for a fluence ≈40 mJ cm−2. In addition, the percentage of transformed to non-transformed region normalized to the pattern period follows similar fluence dependence regardless the period and thus becomes an excellent control parameter. This dependence is fitted within a thermal model that allows for predicting the in-depth profile of the pattern. The model assumes that transformation occurs whenever the laser-induced temperature increase reaches the melting temperature of nanoPS that has been found to be 0.7 of that of crystalline silicon for a porosity of around 79%. The role of thermal gradients across the pattern is discussed in the light of the experimental results and the calculated temperature profiles, and shows that the contribution of lateral thermal flow to melting is not significant for pattern periods ≥6.3 μm.</description><subject>Acronym</subject><subject>Applied physics</subject><subject>Dependence</subject><subject>Enginyeria dels materials</subject><subject>Enginyeria electrònica</subject><subject>EXCIMER LASERS</subject><subject>Excimers</subject><subject>FABRICATION</subject><subject>Fluence</subject><subject>Física</subject><subject>German Academic Exchange Service</subject><subject>INTERFERENCE</subject><subject>Lasers</subject><subject>LAYERS</subject><subject>Làser</subject><subject>Làsers</subject><subject>Materials nanoestructurals</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Melt temperature</subject><subject>MELTING</subject><subject>MELTING POINTS</subject><subject>Nanoparticles</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanosilicon</subject><subject>NANOSTRUCTURES</subject><subject>Optoelectrònica</subject><subject>PARTICLES</subject><subject>Patterning</subject><subject>POROSITY</subject><subject>POROUS MATERIALS</subject><subject>Porous silicon</subject><subject>Pulse duration</subject><subject>PULSED IRRADIATION</subject><subject>Raigs ultraviolats</subject><subject>SILICON</subject><subject>Silicones</subject><subject>Sponsor: DAAD</subject><subject>SURFACES</subject><subject>TEMPERATURE GRADIENTS</subject><subject>Temperature profiles</subject><subject>Thermal analysis</subject><subject>Ultraviolet lasers</subject><subject>ULTRAVIOLET RADIATION</subject><subject>Àrees temàtiques de la UPC</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNpFkE1LxDAQhoMouK4e_AcFTx66ziRNkxxl8QsWvLjnkKapZqlNTVLBf2-XXdjDMAw8PMP7EnKLsEKo2QOuKik4E_KMLBCkKgXncE4WABRLqYS6JFcp7QAQJVMLstr2OZpfH3qXi94kF4vR5Ozi4IfPInTFGGKYUpF8720YrslFZ_rkbo57SbbPTx_r13Lz_vK2ftyUltU0l6IGypTlqlFOGIMCGIq65apqubGGYWdlKxtlm9YiM4p2qu2qCh1tjEIh2ZLcHbwhZa-T9dnZr_n_4GzWlNI5lWAzhQfKpsnq6KyL1mQdjD8d-6EgqKYVBYSTeYzhZ3Ip612Y4jCH0RSpqLmoKzFT90dzDClF1-kx-m8T_zSC3hetUR-LZv-3-22o</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Vega, Fidel</creator><creator>Peláez, Ramón J.</creator><creator>Kuhn, Timo</creator><creator>Afonso, Carmen N.</creator><creator>Recio-Sánchez, Gonzalo</creator><creator>Martín-Palma, Raúl J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>XX2</scope><scope>OTOTI</scope></search><sort><creationdate>20140514</creationdate><title>Ultraviolet laser patterning of porous silicon</title><author>Vega, Fidel ; Peláez, Ramón J. ; Kuhn, Timo ; Afonso, Carmen N. ; Recio-Sánchez, Gonzalo ; Martín-Palma, Raúl J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-760239c59b9e7aa1703176d594d5aca31fc8d8b9cbdc13a92f9df441e2ba91783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acronym</topic><topic>Applied physics</topic><topic>Dependence</topic><topic>Enginyeria dels materials</topic><topic>Enginyeria electrònica</topic><topic>EXCIMER LASERS</topic><topic>Excimers</topic><topic>FABRICATION</topic><topic>Fluence</topic><topic>Física</topic><topic>German Academic Exchange Service</topic><topic>INTERFERENCE</topic><topic>Lasers</topic><topic>LAYERS</topic><topic>Làser</topic><topic>Làsers</topic><topic>Materials nanoestructurals</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Melt temperature</topic><topic>MELTING</topic><topic>MELTING POINTS</topic><topic>Nanoparticles</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanosilicon</topic><topic>NANOSTRUCTURES</topic><topic>Optoelectrònica</topic><topic>PARTICLES</topic><topic>Patterning</topic><topic>POROSITY</topic><topic>POROUS MATERIALS</topic><topic>Porous silicon</topic><topic>Pulse duration</topic><topic>PULSED IRRADIATION</topic><topic>Raigs ultraviolats</topic><topic>SILICON</topic><topic>Silicones</topic><topic>Sponsor: DAAD</topic><topic>SURFACES</topic><topic>TEMPERATURE GRADIENTS</topic><topic>Temperature profiles</topic><topic>Thermal analysis</topic><topic>Ultraviolet lasers</topic><topic>ULTRAVIOLET RADIATION</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vega, Fidel</creatorcontrib><creatorcontrib>Peláez, Ramón J.</creatorcontrib><creatorcontrib>Kuhn, Timo</creatorcontrib><creatorcontrib>Afonso, Carmen N.</creatorcontrib><creatorcontrib>Recio-Sánchez, Gonzalo</creatorcontrib><creatorcontrib>Martín-Palma, Raúl J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vega, Fidel</au><au>Peláez, Ramón J.</au><au>Kuhn, Timo</au><au>Afonso, Carmen N.</au><au>Recio-Sánchez, Gonzalo</au><au>Martín-Palma, Raúl J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultraviolet laser patterning of porous silicon</atitle><jtitle>Journal of applied physics</jtitle><date>2014-05-14</date><risdate>2014</risdate><volume>115</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-step and flexible approach to produce a large variety of patterns formed by alternate regions of almost untransformed nanoPS and regions where its surface has melted and transformed into Si nanoparticles (NPs). The role of laser fluence (5–80 mJ cm−2), and pattern period (6.3–16 μm) on pattern features and surface structuring are discussed. The results show that the diameter of Si NPs increases with fluence up to a saturation value of 75 nm for a fluence ≈40 mJ cm−2. In addition, the percentage of transformed to non-transformed region normalized to the pattern period follows similar fluence dependence regardless the period and thus becomes an excellent control parameter. This dependence is fitted within a thermal model that allows for predicting the in-depth profile of the pattern. The model assumes that transformation occurs whenever the laser-induced temperature increase reaches the melting temperature of nanoPS that has been found to be 0.7 of that of crystalline silicon for a porosity of around 79%. The role of thermal gradients across the pattern is discussed in the light of the experimental results and the calculated temperature profiles, and shows that the contribution of lateral thermal flow to melting is not significant for pattern periods ≥6.3 μm.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4875378</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2014-05, Vol.115 (18) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22275573 |
source | AIP Journals Complete; Recercat; Alma/SFX Local Collection |
subjects | Acronym Applied physics Dependence Enginyeria dels materials Enginyeria electrònica EXCIMER LASERS Excimers FABRICATION Fluence Física German Academic Exchange Service INTERFERENCE Lasers LAYERS Làser Làsers Materials nanoestructurals MATERIALS SCIENCE Mathematical models Melt temperature MELTING MELTING POINTS Nanoparticles NANOSCIENCE AND NANOTECHNOLOGY Nanosilicon NANOSTRUCTURES Optoelectrònica PARTICLES Patterning POROSITY POROUS MATERIALS Porous silicon Pulse duration PULSED IRRADIATION Raigs ultraviolats SILICON Silicones Sponsor: DAAD SURFACES TEMPERATURE GRADIENTS Temperature profiles Thermal analysis Ultraviolet lasers ULTRAVIOLET RADIATION Àrees temàtiques de la UPC |
title | Ultraviolet laser patterning of porous silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultraviolet%20laser%20patterning%20of%20porous%20silicon&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Vega,%20Fidel&rft.date=2014-05-14&rft.volume=115&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4875378&rft_dat=%3Cproquest_osti_%3E2127657647%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127657647&rft_id=info:pmid/&rfr_iscdi=true |