Ultraviolet laser patterning of porous silicon

This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-05, Vol.115 (18)
Hauptverfasser: Vega, Fidel, Peláez, Ramón J., Kuhn, Timo, Afonso, Carmen N., Recio-Sánchez, Gonzalo, Martín-Palma, Raúl J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Journal of applied physics
container_volume 115
creator Vega, Fidel
Peláez, Ramón J.
Kuhn, Timo
Afonso, Carmen N.
Recio-Sánchez, Gonzalo
Martín-Palma, Raúl J.
description This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-step and flexible approach to produce a large variety of patterns formed by alternate regions of almost untransformed nanoPS and regions where its surface has melted and transformed into Si nanoparticles (NPs). The role of laser fluence (5–80 mJ cm−2), and pattern period (6.3–16 μm) on pattern features and surface structuring are discussed. The results show that the diameter of Si NPs increases with fluence up to a saturation value of 75 nm for a fluence ≈40 mJ cm−2. In addition, the percentage of transformed to non-transformed region normalized to the pattern period follows similar fluence dependence regardless the period and thus becomes an excellent control parameter. This dependence is fitted within a thermal model that allows for predicting the in-depth profile of the pattern. The model assumes that transformation occurs whenever the laser-induced temperature increase reaches the melting temperature of nanoPS that has been found to be 0.7 of that of crystalline silicon for a porosity of around 79%. The role of thermal gradients across the pattern is discussed in the light of the experimental results and the calculated temperature profiles, and shows that the contribution of lateral thermal flow to melting is not significant for pattern periods ≥6.3 μm.
doi_str_mv 10.1063/1.4875378
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22275573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127657647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-760239c59b9e7aa1703176d594d5aca31fc8d8b9cbdc13a92f9df441e2ba91783</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK4e_AcFTx66ziRNkxxl8QsWvLjnkKapZqlNTVLBf2-XXdjDMAw8PMP7EnKLsEKo2QOuKik4E_KMLBCkKgXncE4WABRLqYS6JFcp7QAQJVMLstr2OZpfH3qXi94kF4vR5Ozi4IfPInTFGGKYUpF8720YrslFZ_rkbo57SbbPTx_r13Lz_vK2ftyUltU0l6IGypTlqlFOGIMCGIq65apqubGGYWdlKxtlm9YiM4p2qu2qCh1tjEIh2ZLcHbwhZa-T9dnZr_n_4GzWlNI5lWAzhQfKpsnq6KyL1mQdjD8d-6EgqKYVBYSTeYzhZ3Ip612Y4jCH0RSpqLmoKzFT90dzDClF1-kx-m8T_zSC3hetUR-LZv-3-22o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127657647</pqid></control><display><type>article</type><title>Ultraviolet laser patterning of porous silicon</title><source>AIP Journals Complete</source><source>Recercat</source><source>Alma/SFX Local Collection</source><creator>Vega, Fidel ; Peláez, Ramón J. ; Kuhn, Timo ; Afonso, Carmen N. ; Recio-Sánchez, Gonzalo ; Martín-Palma, Raúl J.</creator><creatorcontrib>Vega, Fidel ; Peláez, Ramón J. ; Kuhn, Timo ; Afonso, Carmen N. ; Recio-Sánchez, Gonzalo ; Martín-Palma, Raúl J.</creatorcontrib><description>This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-step and flexible approach to produce a large variety of patterns formed by alternate regions of almost untransformed nanoPS and regions where its surface has melted and transformed into Si nanoparticles (NPs). The role of laser fluence (5–80 mJ cm−2), and pattern period (6.3–16 μm) on pattern features and surface structuring are discussed. The results show that the diameter of Si NPs increases with fluence up to a saturation value of 75 nm for a fluence ≈40 mJ cm−2. In addition, the percentage of transformed to non-transformed region normalized to the pattern period follows similar fluence dependence regardless the period and thus becomes an excellent control parameter. This dependence is fitted within a thermal model that allows for predicting the in-depth profile of the pattern. The model assumes that transformation occurs whenever the laser-induced temperature increase reaches the melting temperature of nanoPS that has been found to be 0.7 of that of crystalline silicon for a porosity of around 79%. The role of thermal gradients across the pattern is discussed in the light of the experimental results and the calculated temperature profiles, and shows that the contribution of lateral thermal flow to melting is not significant for pattern periods ≥6.3 μm.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4875378</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acronym ; Applied physics ; Dependence ; Enginyeria dels materials ; Enginyeria electrònica ; EXCIMER LASERS ; Excimers ; FABRICATION ; Fluence ; Física ; German Academic Exchange Service ; INTERFERENCE ; Lasers ; LAYERS ; Làser ; Làsers ; Materials nanoestructurals ; MATERIALS SCIENCE ; Mathematical models ; Melt temperature ; MELTING ; MELTING POINTS ; Nanoparticles ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanosilicon ; NANOSTRUCTURES ; Optoelectrònica ; PARTICLES ; Patterning ; POROSITY ; POROUS MATERIALS ; Porous silicon ; Pulse duration ; PULSED IRRADIATION ; Raigs ultraviolats ; SILICON ; Silicones ; Sponsor: DAAD ; SURFACES ; TEMPERATURE GRADIENTS ; Temperature profiles ; Thermal analysis ; Ultraviolet lasers ; ULTRAVIOLET RADIATION ; Àrees temàtiques de la UPC</subject><ispartof>Journal of applied physics, 2014-05, Vol.115 (18)</ispartof><rights>2014 AIP Publishing LLC.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-760239c59b9e7aa1703176d594d5aca31fc8d8b9cbdc13a92f9df441e2ba91783</citedby><cites>FETCH-LOGICAL-c362t-760239c59b9e7aa1703176d594d5aca31fc8d8b9cbdc13a92f9df441e2ba91783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,26979,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22275573$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vega, Fidel</creatorcontrib><creatorcontrib>Peláez, Ramón J.</creatorcontrib><creatorcontrib>Kuhn, Timo</creatorcontrib><creatorcontrib>Afonso, Carmen N.</creatorcontrib><creatorcontrib>Recio-Sánchez, Gonzalo</creatorcontrib><creatorcontrib>Martín-Palma, Raúl J.</creatorcontrib><title>Ultraviolet laser patterning of porous silicon</title><title>Journal of applied physics</title><description>This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-step and flexible approach to produce a large variety of patterns formed by alternate regions of almost untransformed nanoPS and regions where its surface has melted and transformed into Si nanoparticles (NPs). The role of laser fluence (5–80 mJ cm−2), and pattern period (6.3–16 μm) on pattern features and surface structuring are discussed. The results show that the diameter of Si NPs increases with fluence up to a saturation value of 75 nm for a fluence ≈40 mJ cm−2. In addition, the percentage of transformed to non-transformed region normalized to the pattern period follows similar fluence dependence regardless the period and thus becomes an excellent control parameter. This dependence is fitted within a thermal model that allows for predicting the in-depth profile of the pattern. The model assumes that transformation occurs whenever the laser-induced temperature increase reaches the melting temperature of nanoPS that has been found to be 0.7 of that of crystalline silicon for a porosity of around 79%. The role of thermal gradients across the pattern is discussed in the light of the experimental results and the calculated temperature profiles, and shows that the contribution of lateral thermal flow to melting is not significant for pattern periods ≥6.3 μm.</description><subject>Acronym</subject><subject>Applied physics</subject><subject>Dependence</subject><subject>Enginyeria dels materials</subject><subject>Enginyeria electrònica</subject><subject>EXCIMER LASERS</subject><subject>Excimers</subject><subject>FABRICATION</subject><subject>Fluence</subject><subject>Física</subject><subject>German Academic Exchange Service</subject><subject>INTERFERENCE</subject><subject>Lasers</subject><subject>LAYERS</subject><subject>Làser</subject><subject>Làsers</subject><subject>Materials nanoestructurals</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Melt temperature</subject><subject>MELTING</subject><subject>MELTING POINTS</subject><subject>Nanoparticles</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanosilicon</subject><subject>NANOSTRUCTURES</subject><subject>Optoelectrònica</subject><subject>PARTICLES</subject><subject>Patterning</subject><subject>POROSITY</subject><subject>POROUS MATERIALS</subject><subject>Porous silicon</subject><subject>Pulse duration</subject><subject>PULSED IRRADIATION</subject><subject>Raigs ultraviolats</subject><subject>SILICON</subject><subject>Silicones</subject><subject>Sponsor: DAAD</subject><subject>SURFACES</subject><subject>TEMPERATURE GRADIENTS</subject><subject>Temperature profiles</subject><subject>Thermal analysis</subject><subject>Ultraviolet lasers</subject><subject>ULTRAVIOLET RADIATION</subject><subject>Àrees temàtiques de la UPC</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNpFkE1LxDAQhoMouK4e_AcFTx66ziRNkxxl8QsWvLjnkKapZqlNTVLBf2-XXdjDMAw8PMP7EnKLsEKo2QOuKik4E_KMLBCkKgXncE4WABRLqYS6JFcp7QAQJVMLstr2OZpfH3qXi94kF4vR5Ozi4IfPInTFGGKYUpF8720YrslFZ_rkbo57SbbPTx_r13Lz_vK2ftyUltU0l6IGypTlqlFOGIMCGIq65apqubGGYWdlKxtlm9YiM4p2qu2qCh1tjEIh2ZLcHbwhZa-T9dnZr_n_4GzWlNI5lWAzhQfKpsnq6KyL1mQdjD8d-6EgqKYVBYSTeYzhZ3Ip612Y4jCH0RSpqLmoKzFT90dzDClF1-kx-m8T_zSC3hetUR-LZv-3-22o</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Vega, Fidel</creator><creator>Peláez, Ramón J.</creator><creator>Kuhn, Timo</creator><creator>Afonso, Carmen N.</creator><creator>Recio-Sánchez, Gonzalo</creator><creator>Martín-Palma, Raúl J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>XX2</scope><scope>OTOTI</scope></search><sort><creationdate>20140514</creationdate><title>Ultraviolet laser patterning of porous silicon</title><author>Vega, Fidel ; Peláez, Ramón J. ; Kuhn, Timo ; Afonso, Carmen N. ; Recio-Sánchez, Gonzalo ; Martín-Palma, Raúl J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-760239c59b9e7aa1703176d594d5aca31fc8d8b9cbdc13a92f9df441e2ba91783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acronym</topic><topic>Applied physics</topic><topic>Dependence</topic><topic>Enginyeria dels materials</topic><topic>Enginyeria electrònica</topic><topic>EXCIMER LASERS</topic><topic>Excimers</topic><topic>FABRICATION</topic><topic>Fluence</topic><topic>Física</topic><topic>German Academic Exchange Service</topic><topic>INTERFERENCE</topic><topic>Lasers</topic><topic>LAYERS</topic><topic>Làser</topic><topic>Làsers</topic><topic>Materials nanoestructurals</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Melt temperature</topic><topic>MELTING</topic><topic>MELTING POINTS</topic><topic>Nanoparticles</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanosilicon</topic><topic>NANOSTRUCTURES</topic><topic>Optoelectrònica</topic><topic>PARTICLES</topic><topic>Patterning</topic><topic>POROSITY</topic><topic>POROUS MATERIALS</topic><topic>Porous silicon</topic><topic>Pulse duration</topic><topic>PULSED IRRADIATION</topic><topic>Raigs ultraviolats</topic><topic>SILICON</topic><topic>Silicones</topic><topic>Sponsor: DAAD</topic><topic>SURFACES</topic><topic>TEMPERATURE GRADIENTS</topic><topic>Temperature profiles</topic><topic>Thermal analysis</topic><topic>Ultraviolet lasers</topic><topic>ULTRAVIOLET RADIATION</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vega, Fidel</creatorcontrib><creatorcontrib>Peláez, Ramón J.</creatorcontrib><creatorcontrib>Kuhn, Timo</creatorcontrib><creatorcontrib>Afonso, Carmen N.</creatorcontrib><creatorcontrib>Recio-Sánchez, Gonzalo</creatorcontrib><creatorcontrib>Martín-Palma, Raúl J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vega, Fidel</au><au>Peláez, Ramón J.</au><au>Kuhn, Timo</au><au>Afonso, Carmen N.</au><au>Recio-Sánchez, Gonzalo</au><au>Martín-Palma, Raúl J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultraviolet laser patterning of porous silicon</atitle><jtitle>Journal of applied physics</jtitle><date>2014-05-14</date><risdate>2014</risdate><volume>115</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>This work reports on the fabrication of 1D fringed patterns on nanostructured porous silicon (nanoPS) layers (563, 372, and 290 nm thick). The patterns are fabricated by phase-mask laser interference using single pulses of an UV excimer laser (193 nm, 20 ns pulse duration). The method is a single-step and flexible approach to produce a large variety of patterns formed by alternate regions of almost untransformed nanoPS and regions where its surface has melted and transformed into Si nanoparticles (NPs). The role of laser fluence (5–80 mJ cm−2), and pattern period (6.3–16 μm) on pattern features and surface structuring are discussed. The results show that the diameter of Si NPs increases with fluence up to a saturation value of 75 nm for a fluence ≈40 mJ cm−2. In addition, the percentage of transformed to non-transformed region normalized to the pattern period follows similar fluence dependence regardless the period and thus becomes an excellent control parameter. This dependence is fitted within a thermal model that allows for predicting the in-depth profile of the pattern. The model assumes that transformation occurs whenever the laser-induced temperature increase reaches the melting temperature of nanoPS that has been found to be 0.7 of that of crystalline silicon for a porosity of around 79%. The role of thermal gradients across the pattern is discussed in the light of the experimental results and the calculated temperature profiles, and shows that the contribution of lateral thermal flow to melting is not significant for pattern periods ≥6.3 μm.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4875378</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-05, Vol.115 (18)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22275573
source AIP Journals Complete; Recercat; Alma/SFX Local Collection
subjects Acronym
Applied physics
Dependence
Enginyeria dels materials
Enginyeria electrònica
EXCIMER LASERS
Excimers
FABRICATION
Fluence
Física
German Academic Exchange Service
INTERFERENCE
Lasers
LAYERS
Làser
Làsers
Materials nanoestructurals
MATERIALS SCIENCE
Mathematical models
Melt temperature
MELTING
MELTING POINTS
Nanoparticles
NANOSCIENCE AND NANOTECHNOLOGY
Nanosilicon
NANOSTRUCTURES
Optoelectrònica
PARTICLES
Patterning
POROSITY
POROUS MATERIALS
Porous silicon
Pulse duration
PULSED IRRADIATION
Raigs ultraviolats
SILICON
Silicones
Sponsor: DAAD
SURFACES
TEMPERATURE GRADIENTS
Temperature profiles
Thermal analysis
Ultraviolet lasers
ULTRAVIOLET RADIATION
Àrees temàtiques de la UPC
title Ultraviolet laser patterning of porous silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultraviolet%20laser%20patterning%20of%20porous%20silicon&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Vega,%20Fidel&rft.date=2014-05-14&rft.volume=115&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4875378&rft_dat=%3Cproquest_osti_%3E2127657647%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127657647&rft_id=info:pmid/&rfr_iscdi=true