Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films

A series of ZnxFe3−xO4 (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO3 (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-05, Vol.115 (17)
Hauptverfasser: Yang, Y. J., Yang, M. M., Luo, Z. L., Hu, C. S., Bao, J., Huang, H. L., Zhang, S., Wang, J. W., Li, P. S., Liu, Y., Zhao, Y. G., Chen, X. C., Pan, G. Q., Jiang, T., Liu, Y. K., Li, X. G., Gao, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Journal of applied physics
container_volume 115
creator Yang, Y. J.
Yang, M. M.
Luo, Z. L.
Hu, C. S.
Bao, J.
Huang, H. L.
Zhang, S.
Wang, J. W.
Li, P. S.
Liu, Y.
Zhao, Y. G.
Chen, X. C.
Pan, G. Q.
Jiang, T.
Liu, Y. K.
Li, X. G.
Gao, C.
description A series of ZnxFe3−xO4 (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO3 (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.
doi_str_mv 10.1063/1.4874920
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22273465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127670838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-50353b692848675ce20311ba0aa5f6b6e080f6881c1a3e861963493e3c7201383</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMoOI4u_AcFVy46viRtmi6HwS8YcKMbNyFNX52MnaQmKai_3uoMuLpwORwul5BLCgsKgt_QRSGromZwRGYUZJ1XZQnHZAbAaC7rqj4lZzFuASiVvJ6RYen8Tvd-jFnaWPPuMMa8xQFdiy5lMQVt3RQ6Ycy0aw9Nnkanmx6znX5zmOy3Tta7bEJfXd76AduswxBswgwHm_Sn1X3W2X4Xz8lJp_uIF4eck5e72-fVQ75-un9cLde5YbJMeQm85I2omSykqEqDDDiljQaty040AkFCJ6SkhmqOUtBa8KLmyE3FgHLJ5-Rq7_UxWRXNNMVsjHcOTVKMsYoXovynhuA_RoxJbf0Y3DRMMcoqUYH8c13vKRN8jAE7NQS70-FLUVC_tyuqDrfzH0oWdBY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127670838</pqid></control><display><type>article</type><title>Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yang, Y. J. ; Yang, M. M. ; Luo, Z. L. ; Hu, C. S. ; Bao, J. ; Huang, H. L. ; Zhang, S. ; Wang, J. W. ; Li, P. S. ; Liu, Y. ; Zhao, Y. G. ; Chen, X. C. ; Pan, G. Q. ; Jiang, T. ; Liu, Y. K. ; Li, X. G. ; Gao, C.</creator><creatorcontrib>Yang, Y. J. ; Yang, M. M. ; Luo, Z. L. ; Hu, C. S. ; Bao, J. ; Huang, H. L. ; Zhang, S. ; Wang, J. W. ; Li, P. S. ; Liu, Y. ; Zhao, Y. G. ; Chen, X. C. ; Pan, G. Q. ; Jiang, T. ; Liu, Y. K. ; Li, X. G. ; Gao, C.</creatorcontrib><description>A series of ZnxFe3−xO4 (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO3 (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4874920</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ANISOTROPY ; Applied physics ; Compressive properties ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTAL DEFECTS ; DOPED MATERIALS ; ELECTRIC CONDUCTIVITY ; ELECTRIC FIELDS ; Electronic devices ; Epitaxial growth ; EPITAXY ; FERRITES ; Film growth ; LATTICE PARAMETERS ; Magnetic anisotropy ; MAGNETIC SEMICONDUCTORS ; MAGNETIZATION ; Magnetron sputtering ; MONOCRYSTALS ; Plane strain ; RADIOWAVE RADIATION ; Single crystals ; SPUTTERING ; STRAINS ; STRONTIUM TITANATES ; SUBSTRATES ; THIN FILMS ; ZINC COMPOUNDS</subject><ispartof>Journal of applied physics, 2014-05, Vol.115 (17)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-50353b692848675ce20311ba0aa5f6b6e080f6881c1a3e861963493e3c7201383</citedby><cites>FETCH-LOGICAL-c285t-50353b692848675ce20311ba0aa5f6b6e080f6881c1a3e861963493e3c7201383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22273465$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Y. J.</creatorcontrib><creatorcontrib>Yang, M. M.</creatorcontrib><creatorcontrib>Luo, Z. L.</creatorcontrib><creatorcontrib>Hu, C. S.</creatorcontrib><creatorcontrib>Bao, J.</creatorcontrib><creatorcontrib>Huang, H. L.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><creatorcontrib>Wang, J. W.</creatorcontrib><creatorcontrib>Li, P. S.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Zhao, Y. G.</creatorcontrib><creatorcontrib>Chen, X. C.</creatorcontrib><creatorcontrib>Pan, G. Q.</creatorcontrib><creatorcontrib>Jiang, T.</creatorcontrib><creatorcontrib>Liu, Y. K.</creatorcontrib><creatorcontrib>Li, X. G.</creatorcontrib><creatorcontrib>Gao, C.</creatorcontrib><title>Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films</title><title>Journal of applied physics</title><description>A series of ZnxFe3−xO4 (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO3 (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.</description><subject>ANISOTROPY</subject><subject>Applied physics</subject><subject>Compressive properties</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTAL DEFECTS</subject><subject>DOPED MATERIALS</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRIC FIELDS</subject><subject>Electronic devices</subject><subject>Epitaxial growth</subject><subject>EPITAXY</subject><subject>FERRITES</subject><subject>Film growth</subject><subject>LATTICE PARAMETERS</subject><subject>Magnetic anisotropy</subject><subject>MAGNETIC SEMICONDUCTORS</subject><subject>MAGNETIZATION</subject><subject>Magnetron sputtering</subject><subject>MONOCRYSTALS</subject><subject>Plane strain</subject><subject>RADIOWAVE RADIATION</subject><subject>Single crystals</subject><subject>SPUTTERING</subject><subject>STRAINS</subject><subject>STRONTIUM TITANATES</subject><subject>SUBSTRATES</subject><subject>THIN FILMS</subject><subject>ZINC COMPOUNDS</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAURYMoOI4u_AcFVy46viRtmi6HwS8YcKMbNyFNX52MnaQmKai_3uoMuLpwORwul5BLCgsKgt_QRSGromZwRGYUZJ1XZQnHZAbAaC7rqj4lZzFuASiVvJ6RYen8Tvd-jFnaWPPuMMa8xQFdiy5lMQVt3RQ6Ycy0aw9Nnkanmx6znX5zmOy3Tta7bEJfXd76AduswxBswgwHm_Sn1X3W2X4Xz8lJp_uIF4eck5e72-fVQ75-un9cLde5YbJMeQm85I2omSykqEqDDDiljQaty040AkFCJ6SkhmqOUtBa8KLmyE3FgHLJ5-Rq7_UxWRXNNMVsjHcOTVKMsYoXovynhuA_RoxJbf0Y3DRMMcoqUYH8c13vKRN8jAE7NQS70-FLUVC_tyuqDrfzH0oWdBY</recordid><startdate>20140507</startdate><enddate>20140507</enddate><creator>Yang, Y. J.</creator><creator>Yang, M. M.</creator><creator>Luo, Z. L.</creator><creator>Hu, C. S.</creator><creator>Bao, J.</creator><creator>Huang, H. L.</creator><creator>Zhang, S.</creator><creator>Wang, J. W.</creator><creator>Li, P. S.</creator><creator>Liu, Y.</creator><creator>Zhao, Y. G.</creator><creator>Chen, X. C.</creator><creator>Pan, G. Q.</creator><creator>Jiang, T.</creator><creator>Liu, Y. K.</creator><creator>Li, X. G.</creator><creator>Gao, C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140507</creationdate><title>Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films</title><author>Yang, Y. J. ; Yang, M. M. ; Luo, Z. L. ; Hu, C. S. ; Bao, J. ; Huang, H. L. ; Zhang, S. ; Wang, J. W. ; Li, P. S. ; Liu, Y. ; Zhao, Y. G. ; Chen, X. C. ; Pan, G. Q. ; Jiang, T. ; Liu, Y. K. ; Li, X. G. ; Gao, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-50353b692848675ce20311ba0aa5f6b6e080f6881c1a3e861963493e3c7201383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ANISOTROPY</topic><topic>Applied physics</topic><topic>Compressive properties</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTAL DEFECTS</topic><topic>DOPED MATERIALS</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRIC FIELDS</topic><topic>Electronic devices</topic><topic>Epitaxial growth</topic><topic>EPITAXY</topic><topic>FERRITES</topic><topic>Film growth</topic><topic>LATTICE PARAMETERS</topic><topic>Magnetic anisotropy</topic><topic>MAGNETIC SEMICONDUCTORS</topic><topic>MAGNETIZATION</topic><topic>Magnetron sputtering</topic><topic>MONOCRYSTALS</topic><topic>Plane strain</topic><topic>RADIOWAVE RADIATION</topic><topic>Single crystals</topic><topic>SPUTTERING</topic><topic>STRAINS</topic><topic>STRONTIUM TITANATES</topic><topic>SUBSTRATES</topic><topic>THIN FILMS</topic><topic>ZINC COMPOUNDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Y. J.</creatorcontrib><creatorcontrib>Yang, M. M.</creatorcontrib><creatorcontrib>Luo, Z. L.</creatorcontrib><creatorcontrib>Hu, C. S.</creatorcontrib><creatorcontrib>Bao, J.</creatorcontrib><creatorcontrib>Huang, H. L.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><creatorcontrib>Wang, J. W.</creatorcontrib><creatorcontrib>Li, P. S.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Zhao, Y. G.</creatorcontrib><creatorcontrib>Chen, X. C.</creatorcontrib><creatorcontrib>Pan, G. Q.</creatorcontrib><creatorcontrib>Jiang, T.</creatorcontrib><creatorcontrib>Liu, Y. K.</creatorcontrib><creatorcontrib>Li, X. G.</creatorcontrib><creatorcontrib>Gao, C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Y. J.</au><au>Yang, M. M.</au><au>Luo, Z. L.</au><au>Hu, C. S.</au><au>Bao, J.</au><au>Huang, H. L.</au><au>Zhang, S.</au><au>Wang, J. W.</au><au>Li, P. S.</au><au>Liu, Y.</au><au>Zhao, Y. G.</au><au>Chen, X. C.</au><au>Pan, G. Q.</au><au>Jiang, T.</au><au>Liu, Y. K.</au><au>Li, X. G.</au><au>Gao, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films</atitle><jtitle>Journal of applied physics</jtitle><date>2014-05-07</date><risdate>2014</risdate><volume>115</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A series of ZnxFe3−xO4 (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO3 (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4874920</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-05, Vol.115 (17)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22273465
source AIP Journals Complete; Alma/SFX Local Collection
subjects ANISOTROPY
Applied physics
Compressive properties
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTAL DEFECTS
DOPED MATERIALS
ELECTRIC CONDUCTIVITY
ELECTRIC FIELDS
Electronic devices
Epitaxial growth
EPITAXY
FERRITES
Film growth
LATTICE PARAMETERS
Magnetic anisotropy
MAGNETIC SEMICONDUCTORS
MAGNETIZATION
Magnetron sputtering
MONOCRYSTALS
Plane strain
RADIOWAVE RADIATION
Single crystals
SPUTTERING
STRAINS
STRONTIUM TITANATES
SUBSTRATES
THIN FILMS
ZINC COMPOUNDS
title Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomalous%20thickness-dependent%20strain%20states%20and%20strain-tunable%20magnetization%20in%20Zn-doped%20ferrite%20epitaxial%20films&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Yang,%20Y.%20J.&rft.date=2014-05-07&rft.volume=115&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4874920&rft_dat=%3Cproquest_osti_%3E2127670838%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127670838&rft_id=info:pmid/&rfr_iscdi=true