THREE-DIMENSIONAL HYDRODYNAMIC SIMULATIONS OF MULTIPHASE GALACTIC DISKS WITH STAR FORMATION FEEDBACK. I. REGULATION OF STAR FORMATION RATES

The energy and momentum feedback from young stars has a profound impact on the interstellar medium (ISM), including heating and driving turbulence in the neutral gas that fuels future star formation. Recent theory has argued that this leads to a quasi-equilibrium self-regulated state, and for outer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2013-10, Vol.776 (1), p.1-20
Hauptverfasser: Kim, Chang-Goo, Ostriker, Eve C, Kim, Woong-Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 776
creator Kim, Chang-Goo
Ostriker, Eve C
Kim, Woong-Tae
description The energy and momentum feedback from young stars has a profound impact on the interstellar medium (ISM), including heating and driving turbulence in the neutral gas that fuels future star formation. Recent theory has argued that this leads to a quasi-equilibrium self-regulated state, and for outer atomic-dominated disks results in the surface density of star formation [summationoperator] sub(SFR) varying approximately linearly with the weight of the ISM (or midplane turbulent + thermal pressure). We use three-dimensional numerical hydrodynamic simulations to test the theoretical predictions for thermal, turbulent, and vertical dynamical equilibrium, and the implied functional dependence of [summationoperator] sub(SFR) on local disk properties. Our models demonstrate that all equilibria are established rapidly, and that the expected proportionalities between mean thermal and turbulent pressures and [summationoperator] sub(SFR) apply. For outer disk regions, this results in [summationoperator] sub(SFR) [is proportional to] [summationoperator][radical][rho] sub(sd), where [summationoperator] is the total gas surface density and [rho] sub(sd) is the midplane density of the stellar disk (plus dark matter). This scaling law arises because [rho] sub(sd) sets the vertical dynamical time in our models (and outer disk regions generally). The coefficient in the star formation law varies inversely with the specific energy and momentum yield from massive stars. We find proportions of warm and cold atomic gas, turbulent-to-thermal pressure, and mean velocity dispersions that are consistent with solar-neighborhood and other outer disk observations. This study confirms the conclusions of a previous set of simulations, which incorporated the same physics treatment but was restricted to radial-vertical slices through the ISM.
doi_str_mv 10.1088/0004-637X/776/1/1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22270880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718929573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e82e104ed6b00057ccc8fa6553e96482e1432f4e8544573f57b549a91b1bbc203</originalsourceid><addsrcrecordid>eNqNkc2O0zAUhS0EEqXwAOwssWGT1r-xszSJ21iTNijJCGZlJcYRRZ1mJs4seAZemoSOWLBidXV0Pp9r-wDwHqMNRlJuEUIsiqn4uhUi3uItfgFWmFMZMcrFS7D6678Gb0L4sUiSJCvwq8krraPMHPSxNuVRFTC_y6oyuzuqg0lhbQ63hWpmp4blDs6iMZ9zVWu4V4VKmxnJTH1Twy-myWHdqAruyurw5wTcaZ19UunNBpoNrPT-OWkJ-oesVKPrt-BV356Df_c81-B2p5s0j4pyb1JVRI5KMkVeEo8R89_ibn4GF8452bcx59QnMVtMRknPvOSMcUF7LjrOkjbBHe46RxBdgw_X3CFMJxvcafLuuxsuF-8mSwgR84cu1Mcr9TAOj08-TPb-FJw_n9uLH56CxQLLhCTzhv9AUYIFl_MV1wBfUTcOIYy-tw_j6b4df1qM7NKkXaqxS1N2btJii-lvHC-EHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709175855</pqid></control><display><type>article</type><title>THREE-DIMENSIONAL HYDRODYNAMIC SIMULATIONS OF MULTIPHASE GALACTIC DISKS WITH STAR FORMATION FEEDBACK. I. REGULATION OF STAR FORMATION RATES</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kim, Chang-Goo ; Ostriker, Eve C ; Kim, Woong-Tae</creator><creatorcontrib>Kim, Chang-Goo ; Ostriker, Eve C ; Kim, Woong-Tae</creatorcontrib><description>The energy and momentum feedback from young stars has a profound impact on the interstellar medium (ISM), including heating and driving turbulence in the neutral gas that fuels future star formation. Recent theory has argued that this leads to a quasi-equilibrium self-regulated state, and for outer atomic-dominated disks results in the surface density of star formation [summationoperator] sub(SFR) varying approximately linearly with the weight of the ISM (or midplane turbulent + thermal pressure). We use three-dimensional numerical hydrodynamic simulations to test the theoretical predictions for thermal, turbulent, and vertical dynamical equilibrium, and the implied functional dependence of [summationoperator] sub(SFR) on local disk properties. Our models demonstrate that all equilibria are established rapidly, and that the expected proportionalities between mean thermal and turbulent pressures and [summationoperator] sub(SFR) apply. For outer disk regions, this results in [summationoperator] sub(SFR) [is proportional to] [summationoperator][radical][rho] sub(sd), where [summationoperator] is the total gas surface density and [rho] sub(sd) is the midplane density of the stellar disk (plus dark matter). This scaling law arises because [rho] sub(sd) sets the vertical dynamical time in our models (and outer disk regions generally). The coefficient in the star formation law varies inversely with the specific energy and momentum yield from massive stars. We find proportions of warm and cold atomic gas, turbulent-to-thermal pressure, and mean velocity dispersions that are consistent with solar-neighborhood and other outer disk observations. This study confirms the conclusions of a previous set of simulations, which incorporated the same physics treatment but was restricted to radial-vertical slices through the ISM.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/776/1/1</identifier><language>eng</language><publisher>United States</publisher><subject>APPROXIMATIONS ; ASTRONOMY ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Computational fluid dynamics ; Density ; Disks ; EQUILIBRIUM ; FEEDBACK ; Fluid flow ; GALAXIES ; Mathematical models ; NONLUMINOUS MATTER ; SCALING LAWS ; STAR EVOLUTION ; Star formation ; STARS ; THREE-DIMENSIONAL CALCULATIONS ; TURBULENCE ; Turbulent flow</subject><ispartof>The Astrophysical journal, 2013-10, Vol.776 (1), p.1-20</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e82e104ed6b00057ccc8fa6553e96482e1432f4e8544573f57b549a91b1bbc203</citedby><cites>FETCH-LOGICAL-c382t-e82e104ed6b00057ccc8fa6553e96482e1432f4e8544573f57b549a91b1bbc203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22270880$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Chang-Goo</creatorcontrib><creatorcontrib>Ostriker, Eve C</creatorcontrib><creatorcontrib>Kim, Woong-Tae</creatorcontrib><title>THREE-DIMENSIONAL HYDRODYNAMIC SIMULATIONS OF MULTIPHASE GALACTIC DISKS WITH STAR FORMATION FEEDBACK. I. REGULATION OF STAR FORMATION RATES</title><title>The Astrophysical journal</title><description>The energy and momentum feedback from young stars has a profound impact on the interstellar medium (ISM), including heating and driving turbulence in the neutral gas that fuels future star formation. Recent theory has argued that this leads to a quasi-equilibrium self-regulated state, and for outer atomic-dominated disks results in the surface density of star formation [summationoperator] sub(SFR) varying approximately linearly with the weight of the ISM (or midplane turbulent + thermal pressure). We use three-dimensional numerical hydrodynamic simulations to test the theoretical predictions for thermal, turbulent, and vertical dynamical equilibrium, and the implied functional dependence of [summationoperator] sub(SFR) on local disk properties. Our models demonstrate that all equilibria are established rapidly, and that the expected proportionalities between mean thermal and turbulent pressures and [summationoperator] sub(SFR) apply. For outer disk regions, this results in [summationoperator] sub(SFR) [is proportional to] [summationoperator][radical][rho] sub(sd), where [summationoperator] is the total gas surface density and [rho] sub(sd) is the midplane density of the stellar disk (plus dark matter). This scaling law arises because [rho] sub(sd) sets the vertical dynamical time in our models (and outer disk regions generally). The coefficient in the star formation law varies inversely with the specific energy and momentum yield from massive stars. We find proportions of warm and cold atomic gas, turbulent-to-thermal pressure, and mean velocity dispersions that are consistent with solar-neighborhood and other outer disk observations. This study confirms the conclusions of a previous set of simulations, which incorporated the same physics treatment but was restricted to radial-vertical slices through the ISM.</description><subject>APPROXIMATIONS</subject><subject>ASTRONOMY</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Disks</subject><subject>EQUILIBRIUM</subject><subject>FEEDBACK</subject><subject>Fluid flow</subject><subject>GALAXIES</subject><subject>Mathematical models</subject><subject>NONLUMINOUS MATTER</subject><subject>SCALING LAWS</subject><subject>STAR EVOLUTION</subject><subject>Star formation</subject><subject>STARS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkc2O0zAUhS0EEqXwAOwssWGT1r-xszSJ21iTNijJCGZlJcYRRZ1mJs4seAZemoSOWLBidXV0Pp9r-wDwHqMNRlJuEUIsiqn4uhUi3uItfgFWmFMZMcrFS7D6678Gb0L4sUiSJCvwq8krraPMHPSxNuVRFTC_y6oyuzuqg0lhbQ63hWpmp4blDs6iMZ9zVWu4V4VKmxnJTH1Twy-myWHdqAruyurw5wTcaZ19UunNBpoNrPT-OWkJ-oesVKPrt-BV356Df_c81-B2p5s0j4pyb1JVRI5KMkVeEo8R89_ibn4GF8452bcx59QnMVtMRknPvOSMcUF7LjrOkjbBHe46RxBdgw_X3CFMJxvcafLuuxsuF-8mSwgR84cu1Mcr9TAOj08-TPb-FJw_n9uLH56CxQLLhCTzhv9AUYIFl_MV1wBfUTcOIYy-tw_j6b4df1qM7NKkXaqxS1N2btJii-lvHC-EHw</recordid><startdate>20131010</startdate><enddate>20131010</enddate><creator>Kim, Chang-Goo</creator><creator>Ostriker, Eve C</creator><creator>Kim, Woong-Tae</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20131010</creationdate><title>THREE-DIMENSIONAL HYDRODYNAMIC SIMULATIONS OF MULTIPHASE GALACTIC DISKS WITH STAR FORMATION FEEDBACK. I. REGULATION OF STAR FORMATION RATES</title><author>Kim, Chang-Goo ; Ostriker, Eve C ; Kim, Woong-Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e82e104ed6b00057ccc8fa6553e96482e1432f4e8544573f57b549a91b1bbc203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>APPROXIMATIONS</topic><topic>ASTRONOMY</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Disks</topic><topic>EQUILIBRIUM</topic><topic>FEEDBACK</topic><topic>Fluid flow</topic><topic>GALAXIES</topic><topic>Mathematical models</topic><topic>NONLUMINOUS MATTER</topic><topic>SCALING LAWS</topic><topic>STAR EVOLUTION</topic><topic>Star formation</topic><topic>STARS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Chang-Goo</creatorcontrib><creatorcontrib>Ostriker, Eve C</creatorcontrib><creatorcontrib>Kim, Woong-Tae</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Chang-Goo</au><au>Ostriker, Eve C</au><au>Kim, Woong-Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THREE-DIMENSIONAL HYDRODYNAMIC SIMULATIONS OF MULTIPHASE GALACTIC DISKS WITH STAR FORMATION FEEDBACK. I. REGULATION OF STAR FORMATION RATES</atitle><jtitle>The Astrophysical journal</jtitle><date>2013-10-10</date><risdate>2013</risdate><volume>776</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The energy and momentum feedback from young stars has a profound impact on the interstellar medium (ISM), including heating and driving turbulence in the neutral gas that fuels future star formation. Recent theory has argued that this leads to a quasi-equilibrium self-regulated state, and for outer atomic-dominated disks results in the surface density of star formation [summationoperator] sub(SFR) varying approximately linearly with the weight of the ISM (or midplane turbulent + thermal pressure). We use three-dimensional numerical hydrodynamic simulations to test the theoretical predictions for thermal, turbulent, and vertical dynamical equilibrium, and the implied functional dependence of [summationoperator] sub(SFR) on local disk properties. Our models demonstrate that all equilibria are established rapidly, and that the expected proportionalities between mean thermal and turbulent pressures and [summationoperator] sub(SFR) apply. For outer disk regions, this results in [summationoperator] sub(SFR) [is proportional to] [summationoperator][radical][rho] sub(sd), where [summationoperator] is the total gas surface density and [rho] sub(sd) is the midplane density of the stellar disk (plus dark matter). This scaling law arises because [rho] sub(sd) sets the vertical dynamical time in our models (and outer disk regions generally). The coefficient in the star formation law varies inversely with the specific energy and momentum yield from massive stars. We find proportions of warm and cold atomic gas, turbulent-to-thermal pressure, and mean velocity dispersions that are consistent with solar-neighborhood and other outer disk observations. This study confirms the conclusions of a previous set of simulations, which incorporated the same physics treatment but was restricted to radial-vertical slices through the ISM.</abstract><cop>United States</cop><doi>10.1088/0004-637X/776/1/1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2013-10, Vol.776 (1), p.1-20
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22270880
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects APPROXIMATIONS
ASTRONOMY
ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Computational fluid dynamics
Density
Disks
EQUILIBRIUM
FEEDBACK
Fluid flow
GALAXIES
Mathematical models
NONLUMINOUS MATTER
SCALING LAWS
STAR EVOLUTION
Star formation
STARS
THREE-DIMENSIONAL CALCULATIONS
TURBULENCE
Turbulent flow
title THREE-DIMENSIONAL HYDRODYNAMIC SIMULATIONS OF MULTIPHASE GALACTIC DISKS WITH STAR FORMATION FEEDBACK. I. REGULATION OF STAR FORMATION RATES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THREE-DIMENSIONAL%20HYDRODYNAMIC%20SIMULATIONS%20OF%20MULTIPHASE%20GALACTIC%20DISKS%20WITH%20STAR%20FORMATION%20FEEDBACK.%20I.%20REGULATION%20OF%20STAR%20FORMATION%20RATES&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kim,%20Chang-Goo&rft.date=2013-10-10&rft.volume=776&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/776/1/1&rft_dat=%3Cproquest_osti_%3E1718929573%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709175855&rft_id=info:pmid/&rfr_iscdi=true