Bioorganic nanodots for non-volatile memory devices
In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge st...
Gespeichert in:
Veröffentlicht in: | APL materials 2013-12, Vol.1 (6), p.062104-062104-6 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 062104-6 |
---|---|
container_issue | 6 |
container_start_page | 062104 |
container_title | APL materials |
container_volume | 1 |
creator | Amdursky, Nadav Shalev, Gil Handelman, Amir Litsyn, Simon Natan, Amir Roizin, Yakov Rosenwaks, Yossi Szwarcman, Daniel Rosenman, Gil |
description | In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO2 surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device. |
doi_str_mv | 10.1063/1.4838815 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22269579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e7f9408357fd4918af88e66222828dc4</doaj_id><sourcerecordid>apm</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-77561fa54529075750e2473707f0cabfbae04f52f29e23d13b67081612c7d1783</originalsourceid><addsrcrecordid>eNqdkMtKAzEUhoMoWGoXvsGAK4WpuSez1OKlUHCj4C6kuWjKNCnJMNC3d-oUde3q_Bw-vnP4AbhEcI4gJ7doTiWRErETMMGI85oR_H76J5-DWSkbCCGChMiGTwC5DynlDx2DqaKOyaauVD7lKqZY96nVXWhdtXXblPeVdX0wrlyAM6_b4mbHOQVvjw-vi-d69fK0XNytakOx7GohGEdeM8pwAwUTDDpMBRFQeGj02q-1g9Qz7HHjMLGIrLmAEnGEjbBISDIFy9Frk96oXQ5bnfcq6aC-F8PbSucumNYpJ3xDoSRMeEsbJLWX0nGOMZZYWkMH19XoSqULqpjQOfNpUozOdGrAeMNEM1DXI2VyKiU7_3MVQXWoWCF1rHhgb0b2IBtqSvF_cJ_yL6h21pMvxuWG3Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bioorganic nanodots for non-volatile memory devices</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Amdursky, Nadav ; Shalev, Gil ; Handelman, Amir ; Litsyn, Simon ; Natan, Amir ; Roizin, Yakov ; Rosenwaks, Yossi ; Szwarcman, Daniel ; Rosenman, Gil</creator><creatorcontrib>Amdursky, Nadav ; Shalev, Gil ; Handelman, Amir ; Litsyn, Simon ; Natan, Amir ; Roizin, Yakov ; Rosenwaks, Yossi ; Szwarcman, Daniel ; Rosenman, Gil</creatorcontrib><description>In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO2 surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/1.4838815</identifier><identifier>CODEN: AMPADS</identifier><language>eng</language><publisher>United States: AIP Publishing LLC</publisher><subject>CRYSTALS ; ELECTRON MICROSCOPY ; ELECTRONIC EQUIPMENT ; FABRICATION ; MATERIALS SCIENCE ; MEMORY DEVICES ; PEPTIDES ; QUANTUM DOTS ; SEMICONDUCTOR DEVICES ; SILICA ; SILICON OXIDES ; VOLATILITY</subject><ispartof>APL materials, 2013-12, Vol.1 (6), p.062104-062104-6</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-77561fa54529075750e2473707f0cabfbae04f52f29e23d13b67081612c7d1783</citedby><cites>FETCH-LOGICAL-c428t-77561fa54529075750e2473707f0cabfbae04f52f29e23d13b67081612c7d1783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2100,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22269579$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Amdursky, Nadav</creatorcontrib><creatorcontrib>Shalev, Gil</creatorcontrib><creatorcontrib>Handelman, Amir</creatorcontrib><creatorcontrib>Litsyn, Simon</creatorcontrib><creatorcontrib>Natan, Amir</creatorcontrib><creatorcontrib>Roizin, Yakov</creatorcontrib><creatorcontrib>Rosenwaks, Yossi</creatorcontrib><creatorcontrib>Szwarcman, Daniel</creatorcontrib><creatorcontrib>Rosenman, Gil</creatorcontrib><title>Bioorganic nanodots for non-volatile memory devices</title><title>APL materials</title><description>In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO2 surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device.</description><subject>CRYSTALS</subject><subject>ELECTRON MICROSCOPY</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>FABRICATION</subject><subject>MATERIALS SCIENCE</subject><subject>MEMORY DEVICES</subject><subject>PEPTIDES</subject><subject>QUANTUM DOTS</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SILICA</subject><subject>SILICON OXIDES</subject><subject>VOLATILITY</subject><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkMtKAzEUhoMoWGoXvsGAK4WpuSez1OKlUHCj4C6kuWjKNCnJMNC3d-oUde3q_Bw-vnP4AbhEcI4gJ7doTiWRErETMMGI85oR_H76J5-DWSkbCCGChMiGTwC5DynlDx2DqaKOyaauVD7lKqZY96nVXWhdtXXblPeVdX0wrlyAM6_b4mbHOQVvjw-vi-d69fK0XNytakOx7GohGEdeM8pwAwUTDDpMBRFQeGj02q-1g9Qz7HHjMLGIrLmAEnGEjbBISDIFy9Frk96oXQ5bnfcq6aC-F8PbSucumNYpJ3xDoSRMeEsbJLWX0nGOMZZYWkMH19XoSqULqpjQOfNpUozOdGrAeMNEM1DXI2VyKiU7_3MVQXWoWCF1rHhgb0b2IBtqSvF_cJ_yL6h21pMvxuWG3Q</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Amdursky, Nadav</creator><creator>Shalev, Gil</creator><creator>Handelman, Amir</creator><creator>Litsyn, Simon</creator><creator>Natan, Amir</creator><creator>Roizin, Yakov</creator><creator>Rosenwaks, Yossi</creator><creator>Szwarcman, Daniel</creator><creator>Rosenman, Gil</creator><general>AIP Publishing LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20131201</creationdate><title>Bioorganic nanodots for non-volatile memory devices</title><author>Amdursky, Nadav ; Shalev, Gil ; Handelman, Amir ; Litsyn, Simon ; Natan, Amir ; Roizin, Yakov ; Rosenwaks, Yossi ; Szwarcman, Daniel ; Rosenman, Gil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-77561fa54529075750e2473707f0cabfbae04f52f29e23d13b67081612c7d1783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CRYSTALS</topic><topic>ELECTRON MICROSCOPY</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>FABRICATION</topic><topic>MATERIALS SCIENCE</topic><topic>MEMORY DEVICES</topic><topic>PEPTIDES</topic><topic>QUANTUM DOTS</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SILICA</topic><topic>SILICON OXIDES</topic><topic>VOLATILITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amdursky, Nadav</creatorcontrib><creatorcontrib>Shalev, Gil</creatorcontrib><creatorcontrib>Handelman, Amir</creatorcontrib><creatorcontrib>Litsyn, Simon</creatorcontrib><creatorcontrib>Natan, Amir</creatorcontrib><creatorcontrib>Roizin, Yakov</creatorcontrib><creatorcontrib>Rosenwaks, Yossi</creatorcontrib><creatorcontrib>Szwarcman, Daniel</creatorcontrib><creatorcontrib>Rosenman, Gil</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amdursky, Nadav</au><au>Shalev, Gil</au><au>Handelman, Amir</au><au>Litsyn, Simon</au><au>Natan, Amir</au><au>Roizin, Yakov</au><au>Rosenwaks, Yossi</au><au>Szwarcman, Daniel</au><au>Rosenman, Gil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioorganic nanodots for non-volatile memory devices</atitle><jtitle>APL materials</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>1</volume><issue>6</issue><spage>062104</spage><epage>062104-6</epage><pages>062104-062104-6</pages><issn>2166-532X</issn><eissn>2166-532X</eissn><coden>AMPADS</coden><abstract>In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO2 surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device.</abstract><cop>United States</cop><pub>AIP Publishing LLC</pub><doi>10.1063/1.4838815</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2166-532X |
ispartof | APL materials, 2013-12, Vol.1 (6), p.062104-062104-6 |
issn | 2166-532X 2166-532X |
language | eng |
recordid | cdi_osti_scitechconnect_22269579 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | CRYSTALS ELECTRON MICROSCOPY ELECTRONIC EQUIPMENT FABRICATION MATERIALS SCIENCE MEMORY DEVICES PEPTIDES QUANTUM DOTS SEMICONDUCTOR DEVICES SILICA SILICON OXIDES VOLATILITY |
title | Bioorganic nanodots for non-volatile memory devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioorganic%20nanodots%20for%20non-volatile%20memory%20devices&rft.jtitle=APL%20materials&rft.au=Amdursky,%20Nadav&rft.date=2013-12-01&rft.volume=1&rft.issue=6&rft.spage=062104&rft.epage=062104-6&rft.pages=062104-062104-6&rft.issn=2166-532X&rft.eissn=2166-532X&rft.coden=AMPADS&rft_id=info:doi/10.1063/1.4838815&rft_dat=%3Cscitation_osti_%3Eapm%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_e7f9408357fd4918af88e66222828dc4&rfr_iscdi=true |