Electronic transport in graphene-based heterostructures
While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN,...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-05, Vol.104 (18) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 104 |
creator | Tan, J. Y. Avsar, A. Balakrishnan, J. Koon, G. K. W. Taychatanapat, T. O'Farrell, E. C. T. Watanabe, K. Taniguchi, T. Eda, G. Castro Neto, A. H. Özyilmaz, B. |
description | While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS2) and molybdenum disulfide (MoS2)) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ∼0.1 nm) compared to conventional SiO2 substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS2 substrates (G/WS2) are equally promising for high quality electronic transport (μ ∼ 38 000 cm2/V s at room temperature), followed by G/MoS2 (μ ∼ 10 000 cm2/V s) and G/GaSe (μ ∼ 2200 cm2/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS2 and G/MoS2 heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate. |
doi_str_mv | 10.1063/1.4872178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22269207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127657550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-1eae174dc4430521c2f666df915ea9f4039025ad9da16d451345f2aaf6347a4e3</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMoWKsL32DAlYupObnOLKXUKhTc6DrEzIkzpWbGJLPw7Y204OrnwMf5L4TcAl0BVfwBVqLRDHRzRhZAta45QHNOFpRSXqtWwiW5SmlfTsk4XxC9OaDLcQyDq3K0IU1jzNUQqs9opx4D1h82YVf1mDGOKcfZ5TliuiYX3h4S3px0Sd6fNm_r53r3un1ZP-5qxyXkGtAiaNE5IXhxBMe8UqrzLUi0rReUt5RJ27WdBdUJCVxIz6z1igttBfIluTv-Ld6DSW7I6Ho3hlBSG8aYahnV_9QUx-8ZUzb7cY6hBDMMmFZSS0kLdX-kXGmSInozxeHLxh8D1PytZ8Cc1uO_n-df0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127657550</pqid></control><display><type>article</type><title>Electronic transport in graphene-based heterostructures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Tan, J. Y. ; Avsar, A. ; Balakrishnan, J. ; Koon, G. K. W. ; Taychatanapat, T. ; O'Farrell, E. C. T. ; Watanabe, K. ; Taniguchi, T. ; Eda, G. ; Castro Neto, A. H. ; Özyilmaz, B.</creator><creatorcontrib>Tan, J. Y. ; Avsar, A. ; Balakrishnan, J. ; Koon, G. K. W. ; Taychatanapat, T. ; O'Farrell, E. C. T. ; Watanabe, K. ; Taniguchi, T. ; Eda, G. ; Castro Neto, A. H. ; Özyilmaz, B.</creatorcontrib><description>While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS2) and molybdenum disulfide (MoS2)) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ∼0.1 nm) compared to conventional SiO2 substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS2 substrates (G/WS2) are equally promising for high quality electronic transport (μ ∼ 38 000 cm2/V s at room temperature), followed by G/MoS2 (μ ∼ 10 000 cm2/V s) and G/GaSe (μ ∼ 2200 cm2/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS2 and G/MoS2 heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4872178</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; ATOMIC FORCE MICROSCOPY ; Boron nitride ; BORON NITRIDES ; CRYSTALS ; Electron transport ; Electronic devices ; FIELD EFFECT TRANSISTORS ; GALLIUM SELENIDES ; GRAPHENE ; Heterostructures ; Lattice vacancies ; MATERIALS SCIENCE ; Molybdenum disulfide ; MOLYBDENUM SULFIDES ; Morphology ; Semiconductor devices ; Silicon dioxide ; SUBSTRATES ; Surface roughness ; Transition metal compounds ; Tungsten disulfide ; TUNGSTEN SULFIDES</subject><ispartof>Applied physics letters, 2014-05, Vol.104 (18)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-1eae174dc4430521c2f666df915ea9f4039025ad9da16d451345f2aaf6347a4e3</citedby><cites>FETCH-LOGICAL-c351t-1eae174dc4430521c2f666df915ea9f4039025ad9da16d451345f2aaf6347a4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22269207$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, J. Y.</creatorcontrib><creatorcontrib>Avsar, A.</creatorcontrib><creatorcontrib>Balakrishnan, J.</creatorcontrib><creatorcontrib>Koon, G. K. W.</creatorcontrib><creatorcontrib>Taychatanapat, T.</creatorcontrib><creatorcontrib>O'Farrell, E. C. T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Eda, G.</creatorcontrib><creatorcontrib>Castro Neto, A. H.</creatorcontrib><creatorcontrib>Özyilmaz, B.</creatorcontrib><title>Electronic transport in graphene-based heterostructures</title><title>Applied physics letters</title><description>While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS2) and molybdenum disulfide (MoS2)) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ∼0.1 nm) compared to conventional SiO2 substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS2 substrates (G/WS2) are equally promising for high quality electronic transport (μ ∼ 38 000 cm2/V s at room temperature), followed by G/MoS2 (μ ∼ 10 000 cm2/V s) and G/GaSe (μ ∼ 2200 cm2/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS2 and G/MoS2 heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.</description><subject>Applied physics</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>Boron nitride</subject><subject>BORON NITRIDES</subject><subject>CRYSTALS</subject><subject>Electron transport</subject><subject>Electronic devices</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>GALLIUM SELENIDES</subject><subject>GRAPHENE</subject><subject>Heterostructures</subject><subject>Lattice vacancies</subject><subject>MATERIALS SCIENCE</subject><subject>Molybdenum disulfide</subject><subject>MOLYBDENUM SULFIDES</subject><subject>Morphology</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>SUBSTRATES</subject><subject>Surface roughness</subject><subject>Transition metal compounds</subject><subject>Tungsten disulfide</subject><subject>TUNGSTEN SULFIDES</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEUhoMoWKsL32DAlYupObnOLKXUKhTc6DrEzIkzpWbGJLPw7Y204OrnwMf5L4TcAl0BVfwBVqLRDHRzRhZAta45QHNOFpRSXqtWwiW5SmlfTsk4XxC9OaDLcQyDq3K0IU1jzNUQqs9opx4D1h82YVf1mDGOKcfZ5TliuiYX3h4S3px0Sd6fNm_r53r3un1ZP-5qxyXkGtAiaNE5IXhxBMe8UqrzLUi0rReUt5RJ27WdBdUJCVxIz6z1igttBfIluTv-Ld6DSW7I6Ho3hlBSG8aYahnV_9QUx-8ZUzb7cY6hBDMMmFZSS0kLdX-kXGmSInozxeHLxh8D1PytZ8Cc1uO_n-df0g</recordid><startdate>20140505</startdate><enddate>20140505</enddate><creator>Tan, J. Y.</creator><creator>Avsar, A.</creator><creator>Balakrishnan, J.</creator><creator>Koon, G. K. W.</creator><creator>Taychatanapat, T.</creator><creator>O'Farrell, E. C. T.</creator><creator>Watanabe, K.</creator><creator>Taniguchi, T.</creator><creator>Eda, G.</creator><creator>Castro Neto, A. H.</creator><creator>Özyilmaz, B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140505</creationdate><title>Electronic transport in graphene-based heterostructures</title><author>Tan, J. Y. ; Avsar, A. ; Balakrishnan, J. ; Koon, G. K. W. ; Taychatanapat, T. ; O'Farrell, E. C. T. ; Watanabe, K. ; Taniguchi, T. ; Eda, G. ; Castro Neto, A. H. ; Özyilmaz, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-1eae174dc4430521c2f666df915ea9f4039025ad9da16d451345f2aaf6347a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>Boron nitride</topic><topic>BORON NITRIDES</topic><topic>CRYSTALS</topic><topic>Electron transport</topic><topic>Electronic devices</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>GALLIUM SELENIDES</topic><topic>GRAPHENE</topic><topic>Heterostructures</topic><topic>Lattice vacancies</topic><topic>MATERIALS SCIENCE</topic><topic>Molybdenum disulfide</topic><topic>MOLYBDENUM SULFIDES</topic><topic>Morphology</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>SUBSTRATES</topic><topic>Surface roughness</topic><topic>Transition metal compounds</topic><topic>Tungsten disulfide</topic><topic>TUNGSTEN SULFIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, J. Y.</creatorcontrib><creatorcontrib>Avsar, A.</creatorcontrib><creatorcontrib>Balakrishnan, J.</creatorcontrib><creatorcontrib>Koon, G. K. W.</creatorcontrib><creatorcontrib>Taychatanapat, T.</creatorcontrib><creatorcontrib>O'Farrell, E. C. T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Eda, G.</creatorcontrib><creatorcontrib>Castro Neto, A. H.</creatorcontrib><creatorcontrib>Özyilmaz, B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, J. Y.</au><au>Avsar, A.</au><au>Balakrishnan, J.</au><au>Koon, G. K. W.</au><au>Taychatanapat, T.</au><au>O'Farrell, E. C. T.</au><au>Watanabe, K.</au><au>Taniguchi, T.</au><au>Eda, G.</au><au>Castro Neto, A. H.</au><au>Özyilmaz, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in graphene-based heterostructures</atitle><jtitle>Applied physics letters</jtitle><date>2014-05-05</date><risdate>2014</risdate><volume>104</volume><issue>18</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS2) and molybdenum disulfide (MoS2)) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ∼0.1 nm) compared to conventional SiO2 substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS2 substrates (G/WS2) are equally promising for high quality electronic transport (μ ∼ 38 000 cm2/V s at room temperature), followed by G/MoS2 (μ ∼ 10 000 cm2/V s) and G/GaSe (μ ∼ 2200 cm2/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS2 and G/MoS2 heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4872178</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-05, Vol.104 (18) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22269207 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics ATOMIC FORCE MICROSCOPY Boron nitride BORON NITRIDES CRYSTALS Electron transport Electronic devices FIELD EFFECT TRANSISTORS GALLIUM SELENIDES GRAPHENE Heterostructures Lattice vacancies MATERIALS SCIENCE Molybdenum disulfide MOLYBDENUM SULFIDES Morphology Semiconductor devices Silicon dioxide SUBSTRATES Surface roughness Transition metal compounds Tungsten disulfide TUNGSTEN SULFIDES |
title | Electronic transport in graphene-based heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20graphene-based%20heterostructures&rft.jtitle=Applied%20physics%20letters&rft.au=Tan,%20J.%20Y.&rft.date=2014-05-05&rft.volume=104&rft.issue=18&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4872178&rft_dat=%3Cproquest_osti_%3E2127657550%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127657550&rft_id=info:pmid/&rfr_iscdi=true |