Band gap engineering strategy via polarization rotation in perovskite ferroelectrics
We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-04, Vol.104 (15) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 104 |
creator | Wang, Fenggong Grinberg, Ilya Rappe, Andrew M. |
description | We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics. |
doi_str_mv | 10.1063/1.4871707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22262610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127673468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-47f36cb1ab6c9a5faf35068ca6205357b9c69643abbfa154ed1f89d622063b5a3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsH_0HAk4etmWST7B61-AUFL_UcsmmyptZkTdJC_fWutOBpZuDh5ZkXoWsgMyCC3cGsbiRIIk_QBIiUFQNoTtGEEMIq0XI4Rxc5r8eTU8YmaPmgwwr3esA29D5Ym3zocS5JF9vv8c5rPMSNTv5HFx8DTrEcFh_wYFPc5U9fLHY2pWg31pTkTb5EZ05vsr06zil6f3pczl-qxdvz6_x-URna8FLV0jFhOtCdMK3mTjvGiWiMFpRwxmXXGtGKmumucxp4bVfgmnYlKB0_7bhmU3RzyI25eJXNaGI-TAxh9FCUUkEFkH9qSPF7a3NR67hNYRRTFKgUktWiGanbA2VSzDlZp4bkv3TaKyDqr1oF6lgt-wWxB2s9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127673468</pqid></control><display><type>article</type><title>Band gap engineering strategy via polarization rotation in perovskite ferroelectrics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Fenggong ; Grinberg, Ilya ; Rappe, Andrew M.</creator><creatorcontrib>Wang, Fenggong ; Grinberg, Ilya ; Rappe, Andrew M.</creatorcontrib><description>We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4871707</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Conduction bands ; ELECTRONIC STRUCTURE ; Energy gap ; FERROELECTRIC MATERIALS ; Ferroelectricity ; Ferroelectrics ; First principles ; PEROVSKITE ; Perovskites ; PHOTOVOLTAIC EFFECT ; POLARIZATION ; SOLID SOLUTIONS ; TRIGONAL LATTICES</subject><ispartof>Applied physics letters, 2014-04, Vol.104 (15)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-47f36cb1ab6c9a5faf35068ca6205357b9c69643abbfa154ed1f89d622063b5a3</citedby><cites>FETCH-LOGICAL-c285t-47f36cb1ab6c9a5faf35068ca6205357b9c69643abbfa154ed1f89d622063b5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22262610$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Fenggong</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><title>Band gap engineering strategy via polarization rotation in perovskite ferroelectrics</title><title>Applied physics letters</title><description>We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.</description><subject>Applied physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Conduction bands</subject><subject>ELECTRONIC STRUCTURE</subject><subject>Energy gap</subject><subject>FERROELECTRIC MATERIALS</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>First principles</subject><subject>PEROVSKITE</subject><subject>Perovskites</subject><subject>PHOTOVOLTAIC EFFECT</subject><subject>POLARIZATION</subject><subject>SOLID SOLUTIONS</subject><subject>TRIGONAL LATTICES</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsH_0HAk4etmWST7B61-AUFL_UcsmmyptZkTdJC_fWutOBpZuDh5ZkXoWsgMyCC3cGsbiRIIk_QBIiUFQNoTtGEEMIq0XI4Rxc5r8eTU8YmaPmgwwr3esA29D5Ym3zocS5JF9vv8c5rPMSNTv5HFx8DTrEcFh_wYFPc5U9fLHY2pWg31pTkTb5EZ05vsr06zil6f3pczl-qxdvz6_x-URna8FLV0jFhOtCdMK3mTjvGiWiMFpRwxmXXGtGKmumucxp4bVfgmnYlKB0_7bhmU3RzyI25eJXNaGI-TAxh9FCUUkEFkH9qSPF7a3NR67hNYRRTFKgUktWiGanbA2VSzDlZp4bkv3TaKyDqr1oF6lgt-wWxB2s9</recordid><startdate>20140414</startdate><enddate>20140414</enddate><creator>Wang, Fenggong</creator><creator>Grinberg, Ilya</creator><creator>Rappe, Andrew M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140414</creationdate><title>Band gap engineering strategy via polarization rotation in perovskite ferroelectrics</title><author>Wang, Fenggong ; Grinberg, Ilya ; Rappe, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-47f36cb1ab6c9a5faf35068ca6205357b9c69643abbfa154ed1f89d622063b5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Conduction bands</topic><topic>ELECTRONIC STRUCTURE</topic><topic>Energy gap</topic><topic>FERROELECTRIC MATERIALS</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>First principles</topic><topic>PEROVSKITE</topic><topic>Perovskites</topic><topic>PHOTOVOLTAIC EFFECT</topic><topic>POLARIZATION</topic><topic>SOLID SOLUTIONS</topic><topic>TRIGONAL LATTICES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fenggong</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fenggong</au><au>Grinberg, Ilya</au><au>Rappe, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band gap engineering strategy via polarization rotation in perovskite ferroelectrics</atitle><jtitle>Applied physics letters</jtitle><date>2014-04-14</date><risdate>2014</risdate><volume>104</volume><issue>15</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4871707</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-04, Vol.104 (15) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22262610 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Conduction bands ELECTRONIC STRUCTURE Energy gap FERROELECTRIC MATERIALS Ferroelectricity Ferroelectrics First principles PEROVSKITE Perovskites PHOTOVOLTAIC EFFECT POLARIZATION SOLID SOLUTIONS TRIGONAL LATTICES |
title | Band gap engineering strategy via polarization rotation in perovskite ferroelectrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20gap%20engineering%20strategy%20via%20polarization%20rotation%20in%20perovskite%20ferroelectrics&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Fenggong&rft.date=2014-04-14&rft.volume=104&rft.issue=15&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4871707&rft_dat=%3Cproquest_osti_%3E2127673468%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127673468&rft_id=info:pmid/&rfr_iscdi=true |