Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2014-04, Vol.104 (15)
Hauptverfasser: Wang, Fenggong, Grinberg, Ilya, Rappe, Andrew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Applied physics letters
container_volume 104
creator Wang, Fenggong
Grinberg, Ilya
Rappe, Andrew M.
description We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.
doi_str_mv 10.1063/1.4871707
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22262610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127673468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-47f36cb1ab6c9a5faf35068ca6205357b9c69643abbfa154ed1f89d622063b5a3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsH_0HAk4etmWST7B61-AUFL_UcsmmyptZkTdJC_fWutOBpZuDh5ZkXoWsgMyCC3cGsbiRIIk_QBIiUFQNoTtGEEMIq0XI4Rxc5r8eTU8YmaPmgwwr3esA29D5Ym3zocS5JF9vv8c5rPMSNTv5HFx8DTrEcFh_wYFPc5U9fLHY2pWg31pTkTb5EZ05vsr06zil6f3pczl-qxdvz6_x-URna8FLV0jFhOtCdMK3mTjvGiWiMFpRwxmXXGtGKmumucxp4bVfgmnYlKB0_7bhmU3RzyI25eJXNaGI-TAxh9FCUUkEFkH9qSPF7a3NR67hNYRRTFKgUktWiGanbA2VSzDlZp4bkv3TaKyDqr1oF6lgt-wWxB2s9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127673468</pqid></control><display><type>article</type><title>Band gap engineering strategy via polarization rotation in perovskite ferroelectrics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Fenggong ; Grinberg, Ilya ; Rappe, Andrew M.</creator><creatorcontrib>Wang, Fenggong ; Grinberg, Ilya ; Rappe, Andrew M.</creatorcontrib><description>We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4871707</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Conduction bands ; ELECTRONIC STRUCTURE ; Energy gap ; FERROELECTRIC MATERIALS ; Ferroelectricity ; Ferroelectrics ; First principles ; PEROVSKITE ; Perovskites ; PHOTOVOLTAIC EFFECT ; POLARIZATION ; SOLID SOLUTIONS ; TRIGONAL LATTICES</subject><ispartof>Applied physics letters, 2014-04, Vol.104 (15)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-47f36cb1ab6c9a5faf35068ca6205357b9c69643abbfa154ed1f89d622063b5a3</citedby><cites>FETCH-LOGICAL-c285t-47f36cb1ab6c9a5faf35068ca6205357b9c69643abbfa154ed1f89d622063b5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22262610$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Fenggong</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><title>Band gap engineering strategy via polarization rotation in perovskite ferroelectrics</title><title>Applied physics letters</title><description>We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.</description><subject>Applied physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Conduction bands</subject><subject>ELECTRONIC STRUCTURE</subject><subject>Energy gap</subject><subject>FERROELECTRIC MATERIALS</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>First principles</subject><subject>PEROVSKITE</subject><subject>Perovskites</subject><subject>PHOTOVOLTAIC EFFECT</subject><subject>POLARIZATION</subject><subject>SOLID SOLUTIONS</subject><subject>TRIGONAL LATTICES</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsH_0HAk4etmWST7B61-AUFL_UcsmmyptZkTdJC_fWutOBpZuDh5ZkXoWsgMyCC3cGsbiRIIk_QBIiUFQNoTtGEEMIq0XI4Rxc5r8eTU8YmaPmgwwr3esA29D5Ym3zocS5JF9vv8c5rPMSNTv5HFx8DTrEcFh_wYFPc5U9fLHY2pWg31pTkTb5EZ05vsr06zil6f3pczl-qxdvz6_x-URna8FLV0jFhOtCdMK3mTjvGiWiMFpRwxmXXGtGKmumucxp4bVfgmnYlKB0_7bhmU3RzyI25eJXNaGI-TAxh9FCUUkEFkH9qSPF7a3NR67hNYRRTFKgUktWiGanbA2VSzDlZp4bkv3TaKyDqr1oF6lgt-wWxB2s9</recordid><startdate>20140414</startdate><enddate>20140414</enddate><creator>Wang, Fenggong</creator><creator>Grinberg, Ilya</creator><creator>Rappe, Andrew M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140414</creationdate><title>Band gap engineering strategy via polarization rotation in perovskite ferroelectrics</title><author>Wang, Fenggong ; Grinberg, Ilya ; Rappe, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-47f36cb1ab6c9a5faf35068ca6205357b9c69643abbfa154ed1f89d622063b5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Conduction bands</topic><topic>ELECTRONIC STRUCTURE</topic><topic>Energy gap</topic><topic>FERROELECTRIC MATERIALS</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>First principles</topic><topic>PEROVSKITE</topic><topic>Perovskites</topic><topic>PHOTOVOLTAIC EFFECT</topic><topic>POLARIZATION</topic><topic>SOLID SOLUTIONS</topic><topic>TRIGONAL LATTICES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fenggong</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fenggong</au><au>Grinberg, Ilya</au><au>Rappe, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band gap engineering strategy via polarization rotation in perovskite ferroelectrics</atitle><jtitle>Applied physics letters</jtitle><date>2014-04-14</date><risdate>2014</risdate><volume>104</volume><issue>15</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4871707</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2014-04, Vol.104 (15)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22262610
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Conduction bands
ELECTRONIC STRUCTURE
Energy gap
FERROELECTRIC MATERIALS
Ferroelectricity
Ferroelectrics
First principles
PEROVSKITE
Perovskites
PHOTOVOLTAIC EFFECT
POLARIZATION
SOLID SOLUTIONS
TRIGONAL LATTICES
title Band gap engineering strategy via polarization rotation in perovskite ferroelectrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20gap%20engineering%20strategy%20via%20polarization%20rotation%20in%20perovskite%20ferroelectrics&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Fenggong&rft.date=2014-04-14&rft.volume=104&rft.issue=15&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4871707&rft_dat=%3Cproquest_osti_%3E2127673468%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127673468&rft_id=info:pmid/&rfr_iscdi=true