Quantum emitters dynamically coupled to a quantum field
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 561 |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1566 |
creator | Acevedo, O L Quiroga, L Rodríguez, F J Johnson, N F |
description | We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity. |
doi_str_mv | 10.1063/1.4848534 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22261941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127771749</sourcerecordid><originalsourceid>FETCH-LOGICAL-o211t-a246c39d9911e021de7acad549c37f2b5a37ffebc63b5e747455b429428c12083</originalsourceid><addsrcrecordid>eNpFjkFLwzAYQIMoWKcH_0HBc2e-L1-S5ihDnTAQQcFbSZMUO9pmW9LD_r0DB57e5fF4jN0DXwJX4hGWVFMtBV2wAqSESitQl6zg3FCFJL6v2U1KW87RaF0XTH_MdsrzWIaxzzkcUumPkx17Z4fhWLo474bgyxxLW-7PZteHwd-yq84OKdyduWBfL8-fq3W1eX99Wz1tqogAubJIygnjjQEIHMEHbZ31kowTusNW2hO60DolWhk0aZKyJTSEtQPktViwh79uTLlvkutzcD8uTlNwuUFEBYbg39od4n4OKTfbOB-m01iDgFpr0GTELx2lUnY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2127771749</pqid></control><display><type>conference_proceeding</type><title>Quantum emitters dynamically coupled to a quantum field</title><source>Scitation (American Institute of Physics)</source><creator>Acevedo, O L ; Quiroga, L ; Rodríguez, F J ; Johnson, N F</creator><creatorcontrib>Acevedo, O L ; Quiroga, L ; Rodríguez, F J ; Johnson, N F</creatorcontrib><description>We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4848534</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Coupled modes ; COUPLING ; Emitters ; EQUILIBRIUM ; PHASE TRANSFORMATIONS ; Phase transitions ; QUANTUM DOTS ; SOLIDS</subject><ispartof>AIP conference proceedings, 2013, Vol.1566 (1), p.561</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22261941$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Acevedo, O L</creatorcontrib><creatorcontrib>Quiroga, L</creatorcontrib><creatorcontrib>Rodríguez, F J</creatorcontrib><creatorcontrib>Johnson, N F</creatorcontrib><title>Quantum emitters dynamically coupled to a quantum field</title><title>AIP conference proceedings</title><description>We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Coupled modes</subject><subject>COUPLING</subject><subject>Emitters</subject><subject>EQUILIBRIUM</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Phase transitions</subject><subject>QUANTUM DOTS</subject><subject>SOLIDS</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFjkFLwzAYQIMoWKcH_0HBc2e-L1-S5ihDnTAQQcFbSZMUO9pmW9LD_r0DB57e5fF4jN0DXwJX4hGWVFMtBV2wAqSESitQl6zg3FCFJL6v2U1KW87RaF0XTH_MdsrzWIaxzzkcUumPkx17Z4fhWLo474bgyxxLW-7PZteHwd-yq84OKdyduWBfL8-fq3W1eX99Wz1tqogAubJIygnjjQEIHMEHbZ31kowTusNW2hO60DolWhk0aZKyJTSEtQPktViwh79uTLlvkutzcD8uTlNwuUFEBYbg39od4n4OKTfbOB-m01iDgFpr0GTELx2lUnY</recordid><startdate>20131204</startdate><enddate>20131204</enddate><creator>Acevedo, O L</creator><creator>Quiroga, L</creator><creator>Rodríguez, F J</creator><creator>Johnson, N F</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20131204</creationdate><title>Quantum emitters dynamically coupled to a quantum field</title><author>Acevedo, O L ; Quiroga, L ; Rodríguez, F J ; Johnson, N F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o211t-a246c39d9911e021de7acad549c37f2b5a37ffebc63b5e747455b429428c12083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Coupled modes</topic><topic>COUPLING</topic><topic>Emitters</topic><topic>EQUILIBRIUM</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Phase transitions</topic><topic>QUANTUM DOTS</topic><topic>SOLIDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acevedo, O L</creatorcontrib><creatorcontrib>Quiroga, L</creatorcontrib><creatorcontrib>Rodríguez, F J</creatorcontrib><creatorcontrib>Johnson, N F</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acevedo, O L</au><au>Quiroga, L</au><au>Rodríguez, F J</au><au>Johnson, N F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quantum emitters dynamically coupled to a quantum field</atitle><btitle>AIP conference proceedings</btitle><date>2013-12-04</date><risdate>2013</risdate><volume>1566</volume><issue>1</issue><epage>561</epage><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4848534</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2013, Vol.1566 (1), p.561 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_22261941 |
source | Scitation (American Institute of Physics) |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Coupled modes COUPLING Emitters EQUILIBRIUM PHASE TRANSFORMATIONS Phase transitions QUANTUM DOTS SOLIDS |
title | Quantum emitters dynamically coupled to a quantum field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quantum%20emitters%20dynamically%20coupled%20to%20a%20quantum%20field&rft.btitle=AIP%20conference%20proceedings&rft.au=Acevedo,%20O%20L&rft.date=2013-12-04&rft.volume=1566&rft.issue=1&rft.epage=561&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4848534&rft_dat=%3Cproquest_osti_%3E2127771749%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127771749&rft_id=info:pmid/&rfr_iscdi=true |