Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

Ferroelectric lead zirconate titanate [Pb(ZrxTi1-xO)3, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-11, Vol.114 (20)
Hauptverfasser: Kesim, M T, Zhang, J, Trolier-McKinstry, S, Mantese, J V, Whatmore, R W, Alpay, S P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Journal of applied physics
container_volume 114
creator Kesim, M T
Zhang, J
Trolier-McKinstry, S
Mantese, J V
Whatmore, R W
Alpay, S P
description Ferroelectric lead zirconate titanate [Pb(ZrxTi1-xO)3, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm−2 °C−1, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.
doi_str_mv 10.1063/1.4833555
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22258733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1494309402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-20a77ab12847446aca43aa24d88093e14888a5a759d083dd9998bee46f3b15573</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhoMoWKsH_0HAix625rNJvIn4BYIe9BzS7CyNbDc1kx7qr3dLRU8zh2ce3uEl5JyzGWdzec1nykqptT4gE86sa4zW7JBMGBO8sc64Y3KC-MkY51a6CVm8bUuGHmItKdICuM4DAs0d7SG09DuVmIdQgdZUw35ZpoF2qV8hzQPF1KeRuKH3XTdKdod1CWUVeop11CHgKTnqQo9w9jun5OPh_v3uqXl5fXy-u31potSyNoIFY8KCC6uMUvMQg5IhCNVay5wErqy1QQejXcusbFvnnF0AqHknF1xrI6fkYu_NWJPHmCrE5ZhtGHN5IYS2RsqRutxT65K_NoDVrxJG6PswQN6g58opyZxi4l_4h37mTRnGH7zgwinnDNMjdbWnYsmIBTq_LmkVytZz5nedeO5_O5E_t2l8sA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129499705</pqid></control><display><type>article</type><title>Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Kesim, M T ; Zhang, J ; Trolier-McKinstry, S ; Mantese, J V ; Whatmore, R W ; Alpay, S P</creator><creatorcontrib>Kesim, M T ; Zhang, J ; Trolier-McKinstry, S ; Mantese, J V ; Whatmore, R W ; Alpay, S P</creatorcontrib><description>Ferroelectric lead zirconate titanate [Pb(ZrxTi1-xO)3, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm−2 °C−1, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4833555</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Composition ; COOLING ; Deposition ; FERROELECTRIC MATERIALS ; Ferroelectricity ; Lead ; Lead zirconate titanates ; Linear polarization ; Material properties ; MATERIALS SCIENCE ; OPTIMIZATION ; PHASE TRANSFORMATIONS ; Phase transitions ; POLARIZATION ; POLYCRYSTALS ; PZT ; SILICON ; SUBSTRATES ; Thermal mismatch ; Thermal stress ; THERMAL STRESSES ; THERMODYNAMIC MODEL ; Thermodynamic models ; THIN FILMS ; Transformation temperature</subject><ispartof>Journal of applied physics, 2013-11, Vol.114 (20)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-20a77ab12847446aca43aa24d88093e14888a5a759d083dd9998bee46f3b15573</citedby><cites>FETCH-LOGICAL-c353t-20a77ab12847446aca43aa24d88093e14888a5a759d083dd9998bee46f3b15573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22258733$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kesim, M T</creatorcontrib><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Trolier-McKinstry, S</creatorcontrib><creatorcontrib>Mantese, J V</creatorcontrib><creatorcontrib>Whatmore, R W</creatorcontrib><creatorcontrib>Alpay, S P</creatorcontrib><title>Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses</title><title>Journal of applied physics</title><description>Ferroelectric lead zirconate titanate [Pb(ZrxTi1-xO)3, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm−2 °C−1, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.</description><subject>Applied physics</subject><subject>Composition</subject><subject>COOLING</subject><subject>Deposition</subject><subject>FERROELECTRIC MATERIALS</subject><subject>Ferroelectricity</subject><subject>Lead</subject><subject>Lead zirconate titanates</subject><subject>Linear polarization</subject><subject>Material properties</subject><subject>MATERIALS SCIENCE</subject><subject>OPTIMIZATION</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Phase transitions</subject><subject>POLARIZATION</subject><subject>POLYCRYSTALS</subject><subject>PZT</subject><subject>SILICON</subject><subject>SUBSTRATES</subject><subject>Thermal mismatch</subject><subject>Thermal stress</subject><subject>THERMAL STRESSES</subject><subject>THERMODYNAMIC MODEL</subject><subject>Thermodynamic models</subject><subject>THIN FILMS</subject><subject>Transformation temperature</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhoMoWKsH_0HAix625rNJvIn4BYIe9BzS7CyNbDc1kx7qr3dLRU8zh2ce3uEl5JyzGWdzec1nykqptT4gE86sa4zW7JBMGBO8sc64Y3KC-MkY51a6CVm8bUuGHmItKdICuM4DAs0d7SG09DuVmIdQgdZUw35ZpoF2qV8hzQPF1KeRuKH3XTdKdod1CWUVeop11CHgKTnqQo9w9jun5OPh_v3uqXl5fXy-u31potSyNoIFY8KCC6uMUvMQg5IhCNVay5wErqy1QQejXcusbFvnnF0AqHknF1xrI6fkYu_NWJPHmCrE5ZhtGHN5IYS2RsqRutxT65K_NoDVrxJG6PswQN6g58opyZxi4l_4h37mTRnGH7zgwinnDNMjdbWnYsmIBTq_LmkVytZz5nedeO5_O5E_t2l8sA</recordid><startdate>20131128</startdate><enddate>20131128</enddate><creator>Kesim, M T</creator><creator>Zhang, J</creator><creator>Trolier-McKinstry, S</creator><creator>Mantese, J V</creator><creator>Whatmore, R W</creator><creator>Alpay, S P</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope><scope>OTOTI</scope></search><sort><creationdate>20131128</creationdate><title>Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses</title><author>Kesim, M T ; Zhang, J ; Trolier-McKinstry, S ; Mantese, J V ; Whatmore, R W ; Alpay, S P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-20a77ab12847446aca43aa24d88093e14888a5a759d083dd9998bee46f3b15573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>Composition</topic><topic>COOLING</topic><topic>Deposition</topic><topic>FERROELECTRIC MATERIALS</topic><topic>Ferroelectricity</topic><topic>Lead</topic><topic>Lead zirconate titanates</topic><topic>Linear polarization</topic><topic>Material properties</topic><topic>MATERIALS SCIENCE</topic><topic>OPTIMIZATION</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Phase transitions</topic><topic>POLARIZATION</topic><topic>POLYCRYSTALS</topic><topic>PZT</topic><topic>SILICON</topic><topic>SUBSTRATES</topic><topic>Thermal mismatch</topic><topic>Thermal stress</topic><topic>THERMAL STRESSES</topic><topic>THERMODYNAMIC MODEL</topic><topic>Thermodynamic models</topic><topic>THIN FILMS</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kesim, M T</creatorcontrib><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Trolier-McKinstry, S</creatorcontrib><creatorcontrib>Mantese, J V</creatorcontrib><creatorcontrib>Whatmore, R W</creatorcontrib><creatorcontrib>Alpay, S P</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kesim, M T</au><au>Zhang, J</au><au>Trolier-McKinstry, S</au><au>Mantese, J V</au><au>Whatmore, R W</au><au>Alpay, S P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses</atitle><jtitle>Journal of applied physics</jtitle><date>2013-11-28</date><risdate>2013</risdate><volume>114</volume><issue>20</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Ferroelectric lead zirconate titanate [Pb(ZrxTi1-xO)3, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25–800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm−2 °C−1, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4833555</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2013-11, Vol.114 (20)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22258733
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Applied physics
Composition
COOLING
Deposition
FERROELECTRIC MATERIALS
Ferroelectricity
Lead
Lead zirconate titanates
Linear polarization
Material properties
MATERIALS SCIENCE
OPTIMIZATION
PHASE TRANSFORMATIONS
Phase transitions
POLARIZATION
POLYCRYSTALS
PZT
SILICON
SUBSTRATES
Thermal mismatch
Thermal stress
THERMAL STRESSES
THERMODYNAMIC MODEL
Thermodynamic models
THIN FILMS
Transformation temperature
title Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyroelectric%20response%20of%20lead%20zirconate%20titanate%20thin%20films%20on%20silicon:%20Effect%20of%20thermal%20stresses&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kesim,%20M%20T&rft.date=2013-11-28&rft.volume=114&rft.issue=20&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4833555&rft_dat=%3Cproquest_osti_%3E1494309402%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129499705&rft_id=info:pmid/&rfr_iscdi=true