Transport of active ellipsoidal particles in ratchet potentials
Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found tha...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-03, Vol.140 (9), p.094103-094103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 094103 |
---|---|
container_issue | 9 |
container_start_page | 094103 |
container_title | The Journal of chemical physics |
container_volume | 140 |
creator | Ai, Bao-Quan Wu, Jian-Chun |
description | Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities). |
doi_str_mv | 10.1063/1.4867283 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22255007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127684412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-1e5efe1c4bbe9d0633836a2421c9cb4f88748ed14e0f948ec213b974bd1c4aa33</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWqsHv4AseNHD1kySbjYnkeI_KHip55DNztLIdrMmqeC3N9KqpzcMv3nDe4RcAJ0BrfgtzERdSVbzAzIBWqtSVooekgmlDEpV0eqEnMb4TikFycQxOWEiL7lQE3K3CmaIow-p8F1hbHKfWGDfuzF615q-GE1IzvYYCzcUwSS7xlSMPuGQnOnjGTnqsuD5Xqfk7fFhtXgul69PL4v7ZWkFlakEnGOHYEXToGrzb17zyjDBwCrbiK6upaixBYG0U3myDHijpGjafGMM51NytfP1MTkdrUto19YPA9qkGWPzOaUyU9c7agz-Y4sx6Y2LNscxA_pt1DCnlQAJoP4N_9B3vw1DzqAZMFnVQgDL1M2OssHHGLDTY3AbE740UP3TvQa97z6zl3vHbbPB9o_8LZt_A6G0fGc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127684412</pqid></control><display><type>article</type><title>Transport of active ellipsoidal particles in ratchet potentials</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ai, Bao-Quan ; Wu, Jian-Chun</creator><creatorcontrib>Ai, Bao-Quan ; Wu, Jian-Chun</creatorcontrib><description>Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities).</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4867283</identifier><identifier>PMID: 24606349</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anisotropy ; Asymmetry ; Computer Simulation ; DIFFUSION ; Diffusion rate ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Parameters ; Particle Size ; PARTICLES ; Physics ; Rotation ; Thermodynamic equilibrium ; Thermodynamics ; Transport ; TWO-DIMENSIONAL CALCULATIONS ; VELOCITY</subject><ispartof>The Journal of chemical physics, 2014-03, Vol.140 (9), p.094103-094103</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-1e5efe1c4bbe9d0633836a2421c9cb4f88748ed14e0f948ec213b974bd1c4aa33</citedby><cites>FETCH-LOGICAL-c407t-1e5efe1c4bbe9d0633836a2421c9cb4f88748ed14e0f948ec213b974bd1c4aa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24606349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22255007$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ai, Bao-Quan</creatorcontrib><creatorcontrib>Wu, Jian-Chun</creatorcontrib><title>Transport of active ellipsoidal particles in ratchet potentials</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities).</description><subject>Anisotropy</subject><subject>Asymmetry</subject><subject>Computer Simulation</subject><subject>DIFFUSION</subject><subject>Diffusion rate</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Parameters</subject><subject>Particle Size</subject><subject>PARTICLES</subject><subject>Physics</subject><subject>Rotation</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>Transport</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><subject>VELOCITY</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE9LAzEQxYMoWqsHv4AseNHD1kySbjYnkeI_KHip55DNztLIdrMmqeC3N9KqpzcMv3nDe4RcAJ0BrfgtzERdSVbzAzIBWqtSVooekgmlDEpV0eqEnMb4TikFycQxOWEiL7lQE3K3CmaIow-p8F1hbHKfWGDfuzF615q-GE1IzvYYCzcUwSS7xlSMPuGQnOnjGTnqsuD5Xqfk7fFhtXgul69PL4v7ZWkFlakEnGOHYEXToGrzb17zyjDBwCrbiK6upaixBYG0U3myDHijpGjafGMM51NytfP1MTkdrUto19YPA9qkGWPzOaUyU9c7agz-Y4sx6Y2LNscxA_pt1DCnlQAJoP4N_9B3vw1DzqAZMFnVQgDL1M2OssHHGLDTY3AbE740UP3TvQa97z6zl3vHbbPB9o_8LZt_A6G0fGc</recordid><startdate>20140307</startdate><enddate>20140307</enddate><creator>Ai, Bao-Quan</creator><creator>Wu, Jian-Chun</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140307</creationdate><title>Transport of active ellipsoidal particles in ratchet potentials</title><author>Ai, Bao-Quan ; Wu, Jian-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-1e5efe1c4bbe9d0633836a2421c9cb4f88748ed14e0f948ec213b974bd1c4aa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Asymmetry</topic><topic>Computer Simulation</topic><topic>DIFFUSION</topic><topic>Diffusion rate</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Parameters</topic><topic>Particle Size</topic><topic>PARTICLES</topic><topic>Physics</topic><topic>Rotation</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>Transport</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Bao-Quan</creatorcontrib><creatorcontrib>Wu, Jian-Chun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Bao-Quan</au><au>Wu, Jian-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of active ellipsoidal particles in ratchet potentials</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-03-07</date><risdate>2014</risdate><volume>140</volume><issue>9</issue><spage>094103</spage><epage>094103</epage><pages>094103-094103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities).</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24606349</pmid><doi>10.1063/1.4867283</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2014-03, Vol.140 (9), p.094103-094103 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22255007 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anisotropy Asymmetry Computer Simulation DIFFUSION Diffusion rate INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Parameters Particle Size PARTICLES Physics Rotation Thermodynamic equilibrium Thermodynamics Transport TWO-DIMENSIONAL CALCULATIONS VELOCITY |
title | Transport of active ellipsoidal particles in ratchet potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20active%20ellipsoidal%20particles%20in%20ratchet%20potentials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ai,%20Bao-Quan&rft.date=2014-03-07&rft.volume=140&rft.issue=9&rft.spage=094103&rft.epage=094103&rft.pages=094103-094103&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4867283&rft_dat=%3Cproquest_osti_%3E2127684412%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127684412&rft_id=info:pmid/24606349&rfr_iscdi=true |