Transport of active ellipsoidal particles in ratchet potentials

Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-03, Vol.140 (9), p.094103-094103
Hauptverfasser: Ai, Bao-Quan, Wu, Jian-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 094103
container_issue 9
container_start_page 094103
container_title The Journal of chemical physics
container_volume 140
creator Ai, Bao-Quan
Wu, Jian-Chun
description Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities).
doi_str_mv 10.1063/1.4867283
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22255007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127684412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-1e5efe1c4bbe9d0633836a2421c9cb4f88748ed14e0f948ec213b974bd1c4aa33</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWqsHv4AseNHD1kySbjYnkeI_KHip55DNztLIdrMmqeC3N9KqpzcMv3nDe4RcAJ0BrfgtzERdSVbzAzIBWqtSVooekgmlDEpV0eqEnMb4TikFycQxOWEiL7lQE3K3CmaIow-p8F1hbHKfWGDfuzF615q-GE1IzvYYCzcUwSS7xlSMPuGQnOnjGTnqsuD5Xqfk7fFhtXgul69PL4v7ZWkFlakEnGOHYEXToGrzb17zyjDBwCrbiK6upaixBYG0U3myDHijpGjafGMM51NytfP1MTkdrUto19YPA9qkGWPzOaUyU9c7agz-Y4sx6Y2LNscxA_pt1DCnlQAJoP4N_9B3vw1DzqAZMFnVQgDL1M2OssHHGLDTY3AbE740UP3TvQa97z6zl3vHbbPB9o_8LZt_A6G0fGc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127684412</pqid></control><display><type>article</type><title>Transport of active ellipsoidal particles in ratchet potentials</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ai, Bao-Quan ; Wu, Jian-Chun</creator><creatorcontrib>Ai, Bao-Quan ; Wu, Jian-Chun</creatorcontrib><description>Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities).</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4867283</identifier><identifier>PMID: 24606349</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anisotropy ; Asymmetry ; Computer Simulation ; DIFFUSION ; Diffusion rate ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Parameters ; Particle Size ; PARTICLES ; Physics ; Rotation ; Thermodynamic equilibrium ; Thermodynamics ; Transport ; TWO-DIMENSIONAL CALCULATIONS ; VELOCITY</subject><ispartof>The Journal of chemical physics, 2014-03, Vol.140 (9), p.094103-094103</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-1e5efe1c4bbe9d0633836a2421c9cb4f88748ed14e0f948ec213b974bd1c4aa33</citedby><cites>FETCH-LOGICAL-c407t-1e5efe1c4bbe9d0633836a2421c9cb4f88748ed14e0f948ec213b974bd1c4aa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24606349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22255007$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ai, Bao-Quan</creatorcontrib><creatorcontrib>Wu, Jian-Chun</creatorcontrib><title>Transport of active ellipsoidal particles in ratchet potentials</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities).</description><subject>Anisotropy</subject><subject>Asymmetry</subject><subject>Computer Simulation</subject><subject>DIFFUSION</subject><subject>Diffusion rate</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Parameters</subject><subject>Particle Size</subject><subject>PARTICLES</subject><subject>Physics</subject><subject>Rotation</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>Transport</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><subject>VELOCITY</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE9LAzEQxYMoWqsHv4AseNHD1kySbjYnkeI_KHip55DNztLIdrMmqeC3N9KqpzcMv3nDe4RcAJ0BrfgtzERdSVbzAzIBWqtSVooekgmlDEpV0eqEnMb4TikFycQxOWEiL7lQE3K3CmaIow-p8F1hbHKfWGDfuzF615q-GE1IzvYYCzcUwSS7xlSMPuGQnOnjGTnqsuD5Xqfk7fFhtXgul69PL4v7ZWkFlakEnGOHYEXToGrzb17zyjDBwCrbiK6upaixBYG0U3myDHijpGjafGMM51NytfP1MTkdrUto19YPA9qkGWPzOaUyU9c7agz-Y4sx6Y2LNscxA_pt1DCnlQAJoP4N_9B3vw1DzqAZMFnVQgDL1M2OssHHGLDTY3AbE740UP3TvQa97z6zl3vHbbPB9o_8LZt_A6G0fGc</recordid><startdate>20140307</startdate><enddate>20140307</enddate><creator>Ai, Bao-Quan</creator><creator>Wu, Jian-Chun</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140307</creationdate><title>Transport of active ellipsoidal particles in ratchet potentials</title><author>Ai, Bao-Quan ; Wu, Jian-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-1e5efe1c4bbe9d0633836a2421c9cb4f88748ed14e0f948ec213b974bd1c4aa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Asymmetry</topic><topic>Computer Simulation</topic><topic>DIFFUSION</topic><topic>Diffusion rate</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Parameters</topic><topic>Particle Size</topic><topic>PARTICLES</topic><topic>Physics</topic><topic>Rotation</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>Transport</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Bao-Quan</creatorcontrib><creatorcontrib>Wu, Jian-Chun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Bao-Quan</au><au>Wu, Jian-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of active ellipsoidal particles in ratchet potentials</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-03-07</date><risdate>2014</risdate><volume>140</volume><issue>9</issue><spage>094103</spage><epage>094103</epage><pages>094103-094103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities).</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24606349</pmid><doi>10.1063/1.4867283</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-03, Vol.140 (9), p.094103-094103
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22255007
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Anisotropy
Asymmetry
Computer Simulation
DIFFUSION
Diffusion rate
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Parameters
Particle Size
PARTICLES
Physics
Rotation
Thermodynamic equilibrium
Thermodynamics
Transport
TWO-DIMENSIONAL CALCULATIONS
VELOCITY
title Transport of active ellipsoidal particles in ratchet potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20active%20ellipsoidal%20particles%20in%20ratchet%20potentials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ai,%20Bao-Quan&rft.date=2014-03-07&rft.volume=140&rft.issue=9&rft.spage=094103&rft.epage=094103&rft.pages=094103-094103&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4867283&rft_dat=%3Cproquest_osti_%3E2127684412%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127684412&rft_id=info:pmid/24606349&rfr_iscdi=true