Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  μ m

We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-12, Vol.103 (25)
Hauptverfasser: Xu, Ming, Mittendorff, Martin, Dietz, Roman J. B., Künzel, Harald, Sartorius, Bernd, Göbel, Thorsten, Schneider, Harald, Helm, Manfred, Winnerl, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page
container_title Applied physics letters
container_volume 103
creator Xu, Ming
Mittendorff, Martin
Dietz, Roman J. B.
Künzel, Harald
Sartorius, Bernd
Göbel, Thorsten
Schneider, Harald
Helm, Manfred
Winnerl, Stephan
description We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distribution, and Joule heating. The field distribution becomes more favorable for THz emission as gap size increases, while Joule heating exhibits the opposite dependence. Devices with three different gap sizes, namely 3 μm, 5 μm, and 7.5 μm, have been investigated experimentally, the emitter with a gap size of 7.5 μm showed the best performance. The scalable devices are furthermore employed as detectors. The scalable electrode geometry enables spatially integrated detection, which is attractive for specific applications, e.g., where an unfocused THz beam has to be used.
doi_str_mv 10.1063/1.4855616
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22253671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506364308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-ec7c4b0bb788aab0d7f57b9d3ba8fd21dcd1450eca9bd01e2715daf92206a44c3</originalsourceid><addsrcrecordid>eNpFkUFuFDEQRS1EJIYki9zAEhtY9OCy23b3MoogiRSJTVhb1XZ1pqOZ9mB7AmHFljvlDByCk-BhIlhVfenV168qxs5ALEEY9R6Wbae1AfOCLUBY2yiA7iVbCCFUY3oNr9jrnO-r1FKpBYu3lHBFqXzndzTXvkxx5jgHHqiQ_6u-TmXFr-dLPM_NgJkCX2O6owYTId-uYok-zmFX4QeqYw-Tp8zpm59KRbFwWGr9-8dP_uuJb07Y0YjrTKfP9Zh9_vjh9uKqufl0eX1xftN4BV1pyFvfDmIYbNchDiLYUduhD2rAbgwSgg_QakEe-yEIIGlBBxx7KYXBtvXqmL05-MZcJpf3WfyqxpzrTk5KqZWxUKm3B2qb4pcd5eI2U_a0XuNMcZcd6HpT0yrR_Tf8h97HXZrrDk6CtNaYvtsbvjtQPsWcE41um6YNpkcHwu0f5MA9P0j9Acf3g3c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127766981</pqid></control><display><type>article</type><title>Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  μ m</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Xu, Ming ; Mittendorff, Martin ; Dietz, Roman J. B. ; Künzel, Harald ; Sartorius, Bernd ; Göbel, Thorsten ; Schneider, Harald ; Helm, Manfred ; Winnerl, Stephan</creator><creatorcontrib>Xu, Ming ; Mittendorff, Martin ; Dietz, Roman J. B. ; Künzel, Harald ; Sartorius, Bernd ; Göbel, Thorsten ; Schneider, Harald ; Helm, Manfred ; Winnerl, Stephan</creatorcontrib><description>We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distribution, and Joule heating. The field distribution becomes more favorable for THz emission as gap size increases, while Joule heating exhibits the opposite dependence. Devices with three different gap sizes, namely 3 μm, 5 μm, and 7.5 μm, have been investigated experimentally, the emitter with a gap size of 7.5 μm showed the best performance. The scalable devices are furthermore employed as detectors. The scalable electrode geometry enables spatially integrated detection, which is attractive for specific applications, e.g., where an unfocused THz beam has to be used.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4855616</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; BEAMS ; Beams (structural) ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Dependence ; DETECTION ; Detectors ; ELECTRODES ; Electrons ; EMISSION ; Emitters ; GALLIUM ARSENIDES ; GEOMETRY ; Heterostructures ; INDIUM ARSENIDES ; JOULE HEATING ; Ohmic dissipation ; Resistance heating</subject><ispartof>Applied physics letters, 2013-12, Vol.103 (25)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-ec7c4b0bb788aab0d7f57b9d3ba8fd21dcd1450eca9bd01e2715daf92206a44c3</citedby><cites>FETCH-LOGICAL-c318t-ec7c4b0bb788aab0d7f57b9d3ba8fd21dcd1450eca9bd01e2715daf92206a44c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22253671$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Mittendorff, Martin</creatorcontrib><creatorcontrib>Dietz, Roman J. B.</creatorcontrib><creatorcontrib>Künzel, Harald</creatorcontrib><creatorcontrib>Sartorius, Bernd</creatorcontrib><creatorcontrib>Göbel, Thorsten</creatorcontrib><creatorcontrib>Schneider, Harald</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Winnerl, Stephan</creatorcontrib><title>Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  μ m</title><title>Applied physics letters</title><description>We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distribution, and Joule heating. The field distribution becomes more favorable for THz emission as gap size increases, while Joule heating exhibits the opposite dependence. Devices with three different gap sizes, namely 3 μm, 5 μm, and 7.5 μm, have been investigated experimentally, the emitter with a gap size of 7.5 μm showed the best performance. The scalable devices are furthermore employed as detectors. The scalable electrode geometry enables spatially integrated detection, which is attractive for specific applications, e.g., where an unfocused THz beam has to be used.</description><subject>Applied physics</subject><subject>BEAMS</subject><subject>Beams (structural)</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Dependence</subject><subject>DETECTION</subject><subject>Detectors</subject><subject>ELECTRODES</subject><subject>Electrons</subject><subject>EMISSION</subject><subject>Emitters</subject><subject>GALLIUM ARSENIDES</subject><subject>GEOMETRY</subject><subject>Heterostructures</subject><subject>INDIUM ARSENIDES</subject><subject>JOULE HEATING</subject><subject>Ohmic dissipation</subject><subject>Resistance heating</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkUFuFDEQRS1EJIYki9zAEhtY9OCy23b3MoogiRSJTVhb1XZ1pqOZ9mB7AmHFljvlDByCk-BhIlhVfenV168qxs5ALEEY9R6Wbae1AfOCLUBY2yiA7iVbCCFUY3oNr9jrnO-r1FKpBYu3lHBFqXzndzTXvkxx5jgHHqiQ_6u-TmXFr-dLPM_NgJkCX2O6owYTId-uYok-zmFX4QeqYw-Tp8zpm59KRbFwWGr9-8dP_uuJb07Y0YjrTKfP9Zh9_vjh9uKqufl0eX1xftN4BV1pyFvfDmIYbNchDiLYUduhD2rAbgwSgg_QakEe-yEIIGlBBxx7KYXBtvXqmL05-MZcJpf3WfyqxpzrTk5KqZWxUKm3B2qb4pcd5eI2U_a0XuNMcZcd6HpT0yrR_Tf8h97HXZrrDk6CtNaYvtsbvjtQPsWcE41um6YNpkcHwu0f5MA9P0j9Acf3g3c</recordid><startdate>20131216</startdate><enddate>20131216</enddate><creator>Xu, Ming</creator><creator>Mittendorff, Martin</creator><creator>Dietz, Roman J. B.</creator><creator>Künzel, Harald</creator><creator>Sartorius, Bernd</creator><creator>Göbel, Thorsten</creator><creator>Schneider, Harald</creator><creator>Helm, Manfred</creator><creator>Winnerl, Stephan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QQ</scope><scope>7TB</scope><scope>7U5</scope><scope>FR3</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20131216</creationdate><title>Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  μ m</title><author>Xu, Ming ; Mittendorff, Martin ; Dietz, Roman J. B. ; Künzel, Harald ; Sartorius, Bernd ; Göbel, Thorsten ; Schneider, Harald ; Helm, Manfred ; Winnerl, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-ec7c4b0bb788aab0d7f57b9d3ba8fd21dcd1450eca9bd01e2715daf92206a44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>BEAMS</topic><topic>Beams (structural)</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Dependence</topic><topic>DETECTION</topic><topic>Detectors</topic><topic>ELECTRODES</topic><topic>Electrons</topic><topic>EMISSION</topic><topic>Emitters</topic><topic>GALLIUM ARSENIDES</topic><topic>GEOMETRY</topic><topic>Heterostructures</topic><topic>INDIUM ARSENIDES</topic><topic>JOULE HEATING</topic><topic>Ohmic dissipation</topic><topic>Resistance heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Mittendorff, Martin</creatorcontrib><creatorcontrib>Dietz, Roman J. B.</creatorcontrib><creatorcontrib>Künzel, Harald</creatorcontrib><creatorcontrib>Sartorius, Bernd</creatorcontrib><creatorcontrib>Göbel, Thorsten</creatorcontrib><creatorcontrib>Schneider, Harald</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Winnerl, Stephan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ming</au><au>Mittendorff, Martin</au><au>Dietz, Roman J. B.</au><au>Künzel, Harald</au><au>Sartorius, Bernd</au><au>Göbel, Thorsten</au><au>Schneider, Harald</au><au>Helm, Manfred</au><au>Winnerl, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  μ m</atitle><jtitle>Applied physics letters</jtitle><date>2013-12-16</date><risdate>2013</risdate><volume>103</volume><issue>25</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distribution, and Joule heating. The field distribution becomes more favorable for THz emission as gap size increases, while Joule heating exhibits the opposite dependence. Devices with three different gap sizes, namely 3 μm, 5 μm, and 7.5 μm, have been investigated experimentally, the emitter with a gap size of 7.5 μm showed the best performance. The scalable devices are furthermore employed as detectors. The scalable electrode geometry enables spatially integrated detection, which is attractive for specific applications, e.g., where an unfocused THz beam has to be used.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4855616</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-12, Vol.103 (25)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22253671
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Applied physics
BEAMS
Beams (structural)
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Dependence
DETECTION
Detectors
ELECTRODES
Electrons
EMISSION
Emitters
GALLIUM ARSENIDES
GEOMETRY
Heterostructures
INDIUM ARSENIDES
JOULE HEATING
Ohmic dissipation
Resistance heating
title Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55  μ m
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20generation%20and%20detection%20with%20InGaAs-based%20large-area%20photoconductive%20devices%20excited%20at%201.55%E2%80%89%20%CE%BC%20m&rft.jtitle=Applied%20physics%20letters&rft.au=Xu,%20Ming&rft.date=2013-12-16&rft.volume=103&rft.issue=25&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4855616&rft_dat=%3Cproquest_osti_%3E1506364308%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127766981&rft_id=info:pmid/&rfr_iscdi=true