Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μ m
We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distri...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-12, Vol.103 (25) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 103 |
creator | Xu, Ming Mittendorff, Martin Dietz, Roman J. B. Künzel, Harald Sartorius, Bernd Göbel, Thorsten Schneider, Harald Helm, Manfred Winnerl, Stephan |
description | We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distribution, and Joule heating. The field distribution becomes more favorable for THz emission as gap size increases, while Joule heating exhibits the opposite dependence. Devices with three different gap sizes, namely 3 μm, 5 μm, and 7.5 μm, have been investigated experimentally, the emitter with a gap size of 7.5 μm showed the best performance. The scalable devices are furthermore employed as detectors. The scalable electrode geometry enables spatially integrated detection, which is attractive for specific applications, e.g., where an unfocused THz beam has to be used. |
doi_str_mv | 10.1063/1.4855616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22253671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506364308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-ec7c4b0bb788aab0d7f57b9d3ba8fd21dcd1450eca9bd01e2715daf92206a44c3</originalsourceid><addsrcrecordid>eNpFkUFuFDEQRS1EJIYki9zAEhtY9OCy23b3MoogiRSJTVhb1XZ1pqOZ9mB7AmHFljvlDByCk-BhIlhVfenV168qxs5ALEEY9R6Wbae1AfOCLUBY2yiA7iVbCCFUY3oNr9jrnO-r1FKpBYu3lHBFqXzndzTXvkxx5jgHHqiQ_6u-TmXFr-dLPM_NgJkCX2O6owYTId-uYok-zmFX4QeqYw-Tp8zpm59KRbFwWGr9-8dP_uuJb07Y0YjrTKfP9Zh9_vjh9uKqufl0eX1xftN4BV1pyFvfDmIYbNchDiLYUduhD2rAbgwSgg_QakEe-yEIIGlBBxx7KYXBtvXqmL05-MZcJpf3WfyqxpzrTk5KqZWxUKm3B2qb4pcd5eI2U_a0XuNMcZcd6HpT0yrR_Tf8h97HXZrrDk6CtNaYvtsbvjtQPsWcE41um6YNpkcHwu0f5MA9P0j9Acf3g3c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127766981</pqid></control><display><type>article</type><title>Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μ m</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Xu, Ming ; Mittendorff, Martin ; Dietz, Roman J. B. ; Künzel, Harald ; Sartorius, Bernd ; Göbel, Thorsten ; Schneider, Harald ; Helm, Manfred ; Winnerl, Stephan</creator><creatorcontrib>Xu, Ming ; Mittendorff, Martin ; Dietz, Roman J. B. ; Künzel, Harald ; Sartorius, Bernd ; Göbel, Thorsten ; Schneider, Harald ; Helm, Manfred ; Winnerl, Stephan</creatorcontrib><description>We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distribution, and Joule heating. The field distribution becomes more favorable for THz emission as gap size increases, while Joule heating exhibits the opposite dependence. Devices with three different gap sizes, namely 3 μm, 5 μm, and 7.5 μm, have been investigated experimentally, the emitter with a gap size of 7.5 μm showed the best performance. The scalable devices are furthermore employed as detectors. The scalable electrode geometry enables spatially integrated detection, which is attractive for specific applications, e.g., where an unfocused THz beam has to be used.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4855616</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; BEAMS ; Beams (structural) ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Dependence ; DETECTION ; Detectors ; ELECTRODES ; Electrons ; EMISSION ; Emitters ; GALLIUM ARSENIDES ; GEOMETRY ; Heterostructures ; INDIUM ARSENIDES ; JOULE HEATING ; Ohmic dissipation ; Resistance heating</subject><ispartof>Applied physics letters, 2013-12, Vol.103 (25)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-ec7c4b0bb788aab0d7f57b9d3ba8fd21dcd1450eca9bd01e2715daf92206a44c3</citedby><cites>FETCH-LOGICAL-c318t-ec7c4b0bb788aab0d7f57b9d3ba8fd21dcd1450eca9bd01e2715daf92206a44c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22253671$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Mittendorff, Martin</creatorcontrib><creatorcontrib>Dietz, Roman J. B.</creatorcontrib><creatorcontrib>Künzel, Harald</creatorcontrib><creatorcontrib>Sartorius, Bernd</creatorcontrib><creatorcontrib>Göbel, Thorsten</creatorcontrib><creatorcontrib>Schneider, Harald</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Winnerl, Stephan</creatorcontrib><title>Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μ m</title><title>Applied physics letters</title><description>We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distribution, and Joule heating. The field distribution becomes more favorable for THz emission as gap size increases, while Joule heating exhibits the opposite dependence. Devices with three different gap sizes, namely 3 μm, 5 μm, and 7.5 μm, have been investigated experimentally, the emitter with a gap size of 7.5 μm showed the best performance. The scalable devices are furthermore employed as detectors. The scalable electrode geometry enables spatially integrated detection, which is attractive for specific applications, e.g., where an unfocused THz beam has to be used.</description><subject>Applied physics</subject><subject>BEAMS</subject><subject>Beams (structural)</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Dependence</subject><subject>DETECTION</subject><subject>Detectors</subject><subject>ELECTRODES</subject><subject>Electrons</subject><subject>EMISSION</subject><subject>Emitters</subject><subject>GALLIUM ARSENIDES</subject><subject>GEOMETRY</subject><subject>Heterostructures</subject><subject>INDIUM ARSENIDES</subject><subject>JOULE HEATING</subject><subject>Ohmic dissipation</subject><subject>Resistance heating</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkUFuFDEQRS1EJIYki9zAEhtY9OCy23b3MoogiRSJTVhb1XZ1pqOZ9mB7AmHFljvlDByCk-BhIlhVfenV168qxs5ALEEY9R6Wbae1AfOCLUBY2yiA7iVbCCFUY3oNr9jrnO-r1FKpBYu3lHBFqXzndzTXvkxx5jgHHqiQ_6u-TmXFr-dLPM_NgJkCX2O6owYTId-uYok-zmFX4QeqYw-Tp8zpm59KRbFwWGr9-8dP_uuJb07Y0YjrTKfP9Zh9_vjh9uKqufl0eX1xftN4BV1pyFvfDmIYbNchDiLYUduhD2rAbgwSgg_QakEe-yEIIGlBBxx7KYXBtvXqmL05-MZcJpf3WfyqxpzrTk5KqZWxUKm3B2qb4pcd5eI2U_a0XuNMcZcd6HpT0yrR_Tf8h97HXZrrDk6CtNaYvtsbvjtQPsWcE41um6YNpkcHwu0f5MA9P0j9Acf3g3c</recordid><startdate>20131216</startdate><enddate>20131216</enddate><creator>Xu, Ming</creator><creator>Mittendorff, Martin</creator><creator>Dietz, Roman J. B.</creator><creator>Künzel, Harald</creator><creator>Sartorius, Bernd</creator><creator>Göbel, Thorsten</creator><creator>Schneider, Harald</creator><creator>Helm, Manfred</creator><creator>Winnerl, Stephan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QQ</scope><scope>7TB</scope><scope>7U5</scope><scope>FR3</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20131216</creationdate><title>Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μ m</title><author>Xu, Ming ; Mittendorff, Martin ; Dietz, Roman J. B. ; Künzel, Harald ; Sartorius, Bernd ; Göbel, Thorsten ; Schneider, Harald ; Helm, Manfred ; Winnerl, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-ec7c4b0bb788aab0d7f57b9d3ba8fd21dcd1450eca9bd01e2715daf92206a44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>BEAMS</topic><topic>Beams (structural)</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Dependence</topic><topic>DETECTION</topic><topic>Detectors</topic><topic>ELECTRODES</topic><topic>Electrons</topic><topic>EMISSION</topic><topic>Emitters</topic><topic>GALLIUM ARSENIDES</topic><topic>GEOMETRY</topic><topic>Heterostructures</topic><topic>INDIUM ARSENIDES</topic><topic>JOULE HEATING</topic><topic>Ohmic dissipation</topic><topic>Resistance heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Mittendorff, Martin</creatorcontrib><creatorcontrib>Dietz, Roman J. B.</creatorcontrib><creatorcontrib>Künzel, Harald</creatorcontrib><creatorcontrib>Sartorius, Bernd</creatorcontrib><creatorcontrib>Göbel, Thorsten</creatorcontrib><creatorcontrib>Schneider, Harald</creatorcontrib><creatorcontrib>Helm, Manfred</creatorcontrib><creatorcontrib>Winnerl, Stephan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ming</au><au>Mittendorff, Martin</au><au>Dietz, Roman J. B.</au><au>Künzel, Harald</au><au>Sartorius, Bernd</au><au>Göbel, Thorsten</au><au>Schneider, Harald</au><au>Helm, Manfred</au><au>Winnerl, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μ m</atitle><jtitle>Applied physics letters</jtitle><date>2013-12-16</date><risdate>2013</risdate><volume>103</volume><issue>25</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We report on scalable large-area terahertz emitters and detectors based on In0.53Ga0.47As/In0.52Al0.48As heterostructures for excitation with 1.55 μm radiation. Different geometries involving three different electrode gap sizes are compared with respect to terahertz (THz) emission, bias field distribution, and Joule heating. The field distribution becomes more favorable for THz emission as gap size increases, while Joule heating exhibits the opposite dependence. Devices with three different gap sizes, namely 3 μm, 5 μm, and 7.5 μm, have been investigated experimentally, the emitter with a gap size of 7.5 μm showed the best performance. The scalable devices are furthermore employed as detectors. The scalable electrode geometry enables spatially integrated detection, which is attractive for specific applications, e.g., where an unfocused THz beam has to be used.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4855616</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2013-12, Vol.103 (25) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22253671 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Applied physics BEAMS Beams (structural) CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Dependence DETECTION Detectors ELECTRODES Electrons EMISSION Emitters GALLIUM ARSENIDES GEOMETRY Heterostructures INDIUM ARSENIDES JOULE HEATING Ohmic dissipation Resistance heating |
title | Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μ m |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20generation%20and%20detection%20with%20InGaAs-based%20large-area%20photoconductive%20devices%20excited%20at%201.55%E2%80%89%20%CE%BC%20m&rft.jtitle=Applied%20physics%20letters&rft.au=Xu,%20Ming&rft.date=2013-12-16&rft.volume=103&rft.issue=25&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4855616&rft_dat=%3Cproquest_osti_%3E1506364308%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127766981&rft_id=info:pmid/&rfr_iscdi=true |