Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations

We introduce a database (HAB11) of electronic coupling matrix elements (H(ab)) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-03, Vol.140 (10), p.104105-104105
Hauptverfasser: Kubas, Adam, Hoffmann, Felix, Heck, Alexander, Oberhofer, Harald, Elstner, Marcus, Blumberger, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104105
container_issue 10
container_start_page 104105
container_title The Journal of chemical physics
container_volume 140
creator Kubas, Adam
Hoffmann, Felix
Heck, Alexander
Oberhofer, Harald
Elstner, Marcus
Blumberger, Jochen
description We introduce a database (HAB11) of electronic coupling matrix elements (H(ab)) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H(ab) values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.
doi_str_mv 10.1063/1.4867077
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22253447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1508419911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-e47d48e757c0d299b38f23a5bd7d1b4337409357b2f649ff8a79ede1f6f029cf3</originalsourceid><addsrcrecordid>eNpFkU1vEzEYhC1ERUPhwB9AlriAxBZ_rT96o6EpSJV6KWfL67WzLo4d7N1KXPnluCSU04z0PhrpnQHgDUbnGHH6CZ8zyQUS4hlYYSRVJ7hCz8EKIYI7xRE_BS9rvUcIYUHYC3BKGCcS92gFfl9FZ-eSU7DQ5mUfQ9pW6HOBu9wuSzQF2smUrYNzMal6Vy7g4JKddqb8aDBcf9ncfYSb279i0niwl9BsTUh1hlPYTl10Dy5CM8CQwhwytCY-Zjeb6itw4k2s7vVRz8D3zdXd-mt3c3v9bf35prMMiblzTIxMOtELi0ai1EClJ9T0wyhGPDBKBUOK9mIgnjPlvTRCudFhzz0iynp6Bt4dcnOdg642zM5ONqfUCtCEkJ4yJhr1_kDtS_65uDrrXajWxWiSy0vVrTXJsFIY_w98Qu_zUlL7QRNMBJe9RH2jPhwoW3KtxXm9L6GV90tjpB_n01gf52vs22PiMuzc-ET-24v-ARsHksU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127685805</pqid></control><display><type>article</type><title>Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kubas, Adam ; Hoffmann, Felix ; Heck, Alexander ; Oberhofer, Harald ; Elstner, Marcus ; Blumberger, Jochen</creator><creatorcontrib>Kubas, Adam ; Hoffmann, Felix ; Heck, Alexander ; Oberhofer, Harald ; Elstner, Marcus ; Blumberger, Jochen</creatorcontrib><description>We introduce a database (HAB11) of electronic coupling matrix elements (H(ab)) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H(ab) values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4867077</identifier><identifier>PMID: 24628150</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; CATIONS ; CHARGE DENSITY ; CHARGE DISTRIBUTION ; Charge transfer ; CLUSTER MODEL ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Configuration interaction ; Coupling (molecular) ; COUPLINGS ; DENSITY FUNCTIONAL METHOD ; Density functional theory ; Deoxyribonucleic acid ; DIMERS ; DNA ; ELECTRON TRANSFER ; HARTREE-FOCK METHOD ; INTERACTIONS ; Levels ; MATRIX ELEMENTS ; Molecular orbitals ; ORGANIC SEMICONDUCTORS ; PENTACENE ; PERTURBATION THEORY ; Physics ; POLYCYCLIC SULFUR HETEROCYCLES ; SCALING ; Scaling factors ; THIOPHENE</subject><ispartof>The Journal of chemical physics, 2014-03, Vol.140 (10), p.104105-104105</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-e47d48e757c0d299b38f23a5bd7d1b4337409357b2f649ff8a79ede1f6f029cf3</citedby><cites>FETCH-LOGICAL-c407t-e47d48e757c0d299b38f23a5bd7d1b4337409357b2f649ff8a79ede1f6f029cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24628150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22253447$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kubas, Adam</creatorcontrib><creatorcontrib>Hoffmann, Felix</creatorcontrib><creatorcontrib>Heck, Alexander</creatorcontrib><creatorcontrib>Oberhofer, Harald</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Blumberger, Jochen</creatorcontrib><title>Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We introduce a database (HAB11) of electronic coupling matrix elements (H(ab)) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H(ab) values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>CATIONS</subject><subject>CHARGE DENSITY</subject><subject>CHARGE DISTRIBUTION</subject><subject>Charge transfer</subject><subject>CLUSTER MODEL</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Configuration interaction</subject><subject>Coupling (molecular)</subject><subject>COUPLINGS</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Density functional theory</subject><subject>Deoxyribonucleic acid</subject><subject>DIMERS</subject><subject>DNA</subject><subject>ELECTRON TRANSFER</subject><subject>HARTREE-FOCK METHOD</subject><subject>INTERACTIONS</subject><subject>Levels</subject><subject>MATRIX ELEMENTS</subject><subject>Molecular orbitals</subject><subject>ORGANIC SEMICONDUCTORS</subject><subject>PENTACENE</subject><subject>PERTURBATION THEORY</subject><subject>Physics</subject><subject>POLYCYCLIC SULFUR HETEROCYCLES</subject><subject>SCALING</subject><subject>Scaling factors</subject><subject>THIOPHENE</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkU1vEzEYhC1ERUPhwB9AlriAxBZ_rT96o6EpSJV6KWfL67WzLo4d7N1KXPnluCSU04z0PhrpnQHgDUbnGHH6CZ8zyQUS4hlYYSRVJ7hCz8EKIYI7xRE_BS9rvUcIYUHYC3BKGCcS92gFfl9FZ-eSU7DQ5mUfQ9pW6HOBu9wuSzQF2smUrYNzMal6Vy7g4JKddqb8aDBcf9ncfYSb279i0niwl9BsTUh1hlPYTl10Dy5CM8CQwhwytCY-Zjeb6itw4k2s7vVRz8D3zdXd-mt3c3v9bf35prMMiblzTIxMOtELi0ai1EClJ9T0wyhGPDBKBUOK9mIgnjPlvTRCudFhzz0iynp6Bt4dcnOdg642zM5ONqfUCtCEkJ4yJhr1_kDtS_65uDrrXajWxWiSy0vVrTXJsFIY_w98Qu_zUlL7QRNMBJe9RH2jPhwoW3KtxXm9L6GV90tjpB_n01gf52vs22PiMuzc-ET-24v-ARsHksU</recordid><startdate>20140314</startdate><enddate>20140314</enddate><creator>Kubas, Adam</creator><creator>Hoffmann, Felix</creator><creator>Heck, Alexander</creator><creator>Oberhofer, Harald</creator><creator>Elstner, Marcus</creator><creator>Blumberger, Jochen</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140314</creationdate><title>Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations</title><author>Kubas, Adam ; Hoffmann, Felix ; Heck, Alexander ; Oberhofer, Harald ; Elstner, Marcus ; Blumberger, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-e47d48e757c0d299b38f23a5bd7d1b4337409357b2f649ff8a79ede1f6f029cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>CATIONS</topic><topic>CHARGE DENSITY</topic><topic>CHARGE DISTRIBUTION</topic><topic>Charge transfer</topic><topic>CLUSTER MODEL</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Configuration interaction</topic><topic>Coupling (molecular)</topic><topic>COUPLINGS</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Density functional theory</topic><topic>Deoxyribonucleic acid</topic><topic>DIMERS</topic><topic>DNA</topic><topic>ELECTRON TRANSFER</topic><topic>HARTREE-FOCK METHOD</topic><topic>INTERACTIONS</topic><topic>Levels</topic><topic>MATRIX ELEMENTS</topic><topic>Molecular orbitals</topic><topic>ORGANIC SEMICONDUCTORS</topic><topic>PENTACENE</topic><topic>PERTURBATION THEORY</topic><topic>Physics</topic><topic>POLYCYCLIC SULFUR HETEROCYCLES</topic><topic>SCALING</topic><topic>Scaling factors</topic><topic>THIOPHENE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubas, Adam</creatorcontrib><creatorcontrib>Hoffmann, Felix</creatorcontrib><creatorcontrib>Heck, Alexander</creatorcontrib><creatorcontrib>Oberhofer, Harald</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Blumberger, Jochen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubas, Adam</au><au>Hoffmann, Felix</au><au>Heck, Alexander</au><au>Oberhofer, Harald</au><au>Elstner, Marcus</au><au>Blumberger, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-03-14</date><risdate>2014</risdate><volume>140</volume><issue>10</issue><spage>104105</spage><epage>104105</epage><pages>104105-104105</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We introduce a database (HAB11) of electronic coupling matrix elements (H(ab)) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H(ab) values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24628150</pmid><doi>10.1063/1.4867077</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-03, Vol.140 (10), p.104105-104105
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22253447
source AIP Journals Complete; Alma/SFX Local Collection
subjects ATOMIC AND MOLECULAR PHYSICS
CATIONS
CHARGE DENSITY
CHARGE DISTRIBUTION
Charge transfer
CLUSTER MODEL
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Configuration interaction
Coupling (molecular)
COUPLINGS
DENSITY FUNCTIONAL METHOD
Density functional theory
Deoxyribonucleic acid
DIMERS
DNA
ELECTRON TRANSFER
HARTREE-FOCK METHOD
INTERACTIONS
Levels
MATRIX ELEMENTS
Molecular orbitals
ORGANIC SEMICONDUCTORS
PENTACENE
PERTURBATION THEORY
Physics
POLYCYCLIC SULFUR HETEROCYCLES
SCALING
Scaling factors
THIOPHENE
title Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20couplings%20for%20molecular%20charge%20transfer:%20benchmarking%20CDFT,%20FODFT,%20and%20FODFTB%20against%20high-level%20ab%20initio%20calculations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kubas,%20Adam&rft.date=2014-03-14&rft.volume=140&rft.issue=10&rft.spage=104105&rft.epage=104105&rft.pages=104105-104105&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4867077&rft_dat=%3Cproquest_osti_%3E1508419911%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127685805&rft_id=info:pmid/24628150&rfr_iscdi=true