Conjugate flow action functionals

We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2013-11, Vol.54 (11), p.1
1. Verfasser: Venturi, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title Journal of mathematical physics
container_volume 54
creator Venturi, Daniele
description We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.
doi_str_mv 10.1063/1.4827679
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22251471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130494501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-f59653081038b5f7b1da20f55a86871680425445e5e9887539f404b7dc05382c3</originalsourceid><addsrcrecordid>eNp90E9LAzEQBfAgCtbqwW9Q8aLC1pnsTJI9SvEfFLzoOWzTRLfUTd3sKn57W1vag-Bp5vDjwXtCnCIMEVR-jUMyUitd7Ikegikyrdjsix6AlJkkYw7FUUozAERD1BNno1jPutey9YMwj1-D0rVVrAehq3-fcp6OxUFYHn-yuX3xcnf7PHrIxk_3j6ObceYIVZsFLhTnYBByM-GgJzgtJQTm0iijURkgyUTs2RfGaM6LQEATPXXAuZEu74vzdW5MbWWTq1rv3lysa-9aK6VkJI1LdbFWiyZ-dD619r1Kzs_nZe1jlywqjaQYCr0L3NJZ7JpVJStRFgxEiv5TSFwQG9awVJdr5ZqYUuODXTTVe9l8WwS7Gt6i3Qy_tFdru-pQrlbc4s_Y7KBdTMN_-G_yD5gZi5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459458570</pqid></control><display><type>article</type><title>Conjugate flow action functionals</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Venturi, Daniele</creator><creatorcontrib>Venturi, Daniele</creatorcontrib><description>We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4827679</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CLASSICAL MECHANICS ; Computational fluid dynamics ; Conjugates ; CONSERVATION LAWS ; CURVILINEAR COORDINATES ; Derivatives ; Differential equations ; FIELD EQUATIONS ; FIELD THEORIES ; Field theory ; Fields (mathematics) ; Fluid dynamics ; FLUID FLOW ; FLUID MECHANICS ; Hydrodynamics ; Invariants ; LIE GROUPS ; Manifolds ; Mathematical analysis ; MATHEMATICAL SOLUTIONS ; Nonlinear differential equations ; Nonlinear equations ; NONLINEAR PROBLEMS ; Operators (mathematics) ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; Potential fields ; Quantum physics ; VECTOR FIELDS</subject><ispartof>Journal of mathematical physics, 2013-11, Vol.54 (11), p.1</ispartof><rights>AIP Publishing LLC</rights><rights>Copyright American Institute of Physics Nov 2013</rights><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-f59653081038b5f7b1da20f55a86871680425445e5e9887539f404b7dc05382c3</citedby><cites>FETCH-LOGICAL-c416t-f59653081038b5f7b1da20f55a86871680425445e5e9887539f404b7dc05382c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4827679$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4497,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22251471$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Venturi, Daniele</creatorcontrib><title>Conjugate flow action functionals</title><title>Journal of mathematical physics</title><description>We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CLASSICAL MECHANICS</subject><subject>Computational fluid dynamics</subject><subject>Conjugates</subject><subject>CONSERVATION LAWS</subject><subject>CURVILINEAR COORDINATES</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>FIELD EQUATIONS</subject><subject>FIELD THEORIES</subject><subject>Field theory</subject><subject>Fields (mathematics)</subject><subject>Fluid dynamics</subject><subject>FLUID FLOW</subject><subject>FLUID MECHANICS</subject><subject>Hydrodynamics</subject><subject>Invariants</subject><subject>LIE GROUPS</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>NONLINEAR PROBLEMS</subject><subject>Operators (mathematics)</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>Potential fields</subject><subject>Quantum physics</subject><subject>VECTOR FIELDS</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90E9LAzEQBfAgCtbqwW9Q8aLC1pnsTJI9SvEfFLzoOWzTRLfUTd3sKn57W1vag-Bp5vDjwXtCnCIMEVR-jUMyUitd7Ikegikyrdjsix6AlJkkYw7FUUozAERD1BNno1jPutey9YMwj1-D0rVVrAehq3-fcp6OxUFYHn-yuX3xcnf7PHrIxk_3j6ObceYIVZsFLhTnYBByM-GgJzgtJQTm0iijURkgyUTs2RfGaM6LQEATPXXAuZEu74vzdW5MbWWTq1rv3lysa-9aK6VkJI1LdbFWiyZ-dD619r1Kzs_nZe1jlywqjaQYCr0L3NJZ7JpVJStRFgxEiv5TSFwQG9awVJdr5ZqYUuODXTTVe9l8WwS7Gt6i3Qy_tFdru-pQrlbc4s_Y7KBdTMN_-G_yD5gZi5A</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Venturi, Daniele</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20131101</creationdate><title>Conjugate flow action functionals</title><author>Venturi, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-f59653081038b5f7b1da20f55a86871680425445e5e9887539f404b7dc05382c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CLASSICAL MECHANICS</topic><topic>Computational fluid dynamics</topic><topic>Conjugates</topic><topic>CONSERVATION LAWS</topic><topic>CURVILINEAR COORDINATES</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>FIELD EQUATIONS</topic><topic>FIELD THEORIES</topic><topic>Field theory</topic><topic>Fields (mathematics)</topic><topic>Fluid dynamics</topic><topic>FLUID FLOW</topic><topic>FLUID MECHANICS</topic><topic>Hydrodynamics</topic><topic>Invariants</topic><topic>LIE GROUPS</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>NONLINEAR PROBLEMS</topic><topic>Operators (mathematics)</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>Potential fields</topic><topic>Quantum physics</topic><topic>VECTOR FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venturi, Daniele</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venturi, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugate flow action functionals</atitle><jtitle>Journal of mathematical physics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>54</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4827679</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2013-11, Vol.54 (11), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_osti_scitechconnect_22251471
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CLASSICAL MECHANICS
Computational fluid dynamics
Conjugates
CONSERVATION LAWS
CURVILINEAR COORDINATES
Derivatives
Differential equations
FIELD EQUATIONS
FIELD THEORIES
Field theory
Fields (mathematics)
Fluid dynamics
FLUID FLOW
FLUID MECHANICS
Hydrodynamics
Invariants
LIE GROUPS
Manifolds
Mathematical analysis
MATHEMATICAL SOLUTIONS
Nonlinear differential equations
Nonlinear equations
NONLINEAR PROBLEMS
Operators (mathematics)
PARTIAL DIFFERENTIAL EQUATIONS
Physics
Potential fields
Quantum physics
VECTOR FIELDS
title Conjugate flow action functionals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugate%20flow%20action%20functionals&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Venturi,%20Daniele&rft.date=2013-11-01&rft.volume=54&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4827679&rft_dat=%3Cproquest_osti_%3E3130494501%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459458570&rft_id=info:pmid/&rfr_iscdi=true