Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential
We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitat...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2013-11, Vol.139 (19), p.194501-194501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194501 |
---|---|
container_issue | 19 |
container_start_page | 194501 |
container_title | The Journal of chemical physics |
container_volume | 139 |
creator | Yin, Chih-Chien Li, Arvin Huang-Te Chao, Sheng D |
description | We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform. |
doi_str_mv | 10.1063/1.4829760 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22251429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671585008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-3d4c7a6a00fd1fdd7c35c54f0b14ad49cc67ab05da20ca01904d19c2a495272d3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgLu64evAPSMDLeui18j05yuKqMOBlPYdMJc1k6e7M5gPx39s643r0VKR4UkXxEvKGwQ0DLT6wG7nl1mh4RjYMtnYw2sJzsgHgbLAa9CV5WesDADDD5QtyyaXgIITYkLxLjz0FiocplzzmMtPaSsfWS6RjyTPFPB97i4XWNPfJt5QX-iO1A_V07NNE_Z6mJa3ttaxszlPE1ZXT0-OfD8fc4tKSn16Ri9FPNb4-1yvy_e7T_e2XYfft89fbj7sBpZRtEEGi8doDjIGNIRgUCpUcYc-kD9IiauP3oILngB6YBRmYRe6lVdzwIK7Iu9PcXFtyFVOLeMC8LBGb45wrJrld1fVJHUt-7LE2N6eKcZr8EnOvjmnD1FYBbP9PpTaglTTm3-4n-pB7WdZzHWfcKlDW6lW9PyksudYSR3csafblp2PgfsfqmDvHutq354l9P8fwJP_mKH4BHN2dDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129505996</pqid></control><display><type>article</type><title>Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Yin, Chih-Chien ; Li, Arvin Huang-Te ; Chao, Sheng D</creator><creatorcontrib>Yin, Chih-Chien ; Li, Arvin Huang-Te ; Chao, Sheng D</creatorcontrib><description>We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4829760</identifier><identifier>PMID: 24320333</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>CHLOROFORM ; Chloroform - chemistry ; Computer simulation ; COMPUTERIZED SIMULATION ; Construction sites ; Correlation ; Diffusion effects ; DIMERS ; Distribution functions ; Empirical analysis ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; INTERACTIONS ; LIQUIDS ; MATHEMATICAL METHODS AND COMPUTING ; Mathematical models ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; Molecular Dynamics Simulation ; Molecular Structure ; PERTURBATION THEORY ; Physics ; POLARIZATION ; Quantum Theory ; Radial distribution</subject><ispartof>The Journal of chemical physics, 2013-11, Vol.139 (19), p.194501-194501</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-3d4c7a6a00fd1fdd7c35c54f0b14ad49cc67ab05da20ca01904d19c2a495272d3</citedby><cites>FETCH-LOGICAL-c444t-3d4c7a6a00fd1fdd7c35c54f0b14ad49cc67ab05da20ca01904d19c2a495272d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24320333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22251429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Chih-Chien</creatorcontrib><creatorcontrib>Li, Arvin Huang-Te</creatorcontrib><creatorcontrib>Chao, Sheng D</creatorcontrib><title>Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.</description><subject>CHLOROFORM</subject><subject>Chloroform - chemistry</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Construction sites</subject><subject>Correlation</subject><subject>Diffusion effects</subject><subject>DIMERS</subject><subject>Distribution functions</subject><subject>Empirical analysis</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>INTERACTIONS</subject><subject>LIQUIDS</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Structure</subject><subject>PERTURBATION THEORY</subject><subject>Physics</subject><subject>POLARIZATION</subject><subject>Quantum Theory</subject><subject>Radial distribution</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U2LFDEQBuAgLu64evAPSMDLeui18j05yuKqMOBlPYdMJc1k6e7M5gPx39s643r0VKR4UkXxEvKGwQ0DLT6wG7nl1mh4RjYMtnYw2sJzsgHgbLAa9CV5WesDADDD5QtyyaXgIITYkLxLjz0FiocplzzmMtPaSsfWS6RjyTPFPB97i4XWNPfJt5QX-iO1A_V07NNE_Z6mJa3ttaxszlPE1ZXT0-OfD8fc4tKSn16Ri9FPNb4-1yvy_e7T_e2XYfft89fbj7sBpZRtEEGi8doDjIGNIRgUCpUcYc-kD9IiauP3oILngB6YBRmYRe6lVdzwIK7Iu9PcXFtyFVOLeMC8LBGb45wrJrld1fVJHUt-7LE2N6eKcZr8EnOvjmnD1FYBbP9PpTaglTTm3-4n-pB7WdZzHWfcKlDW6lW9PyksudYSR3csafblp2PgfsfqmDvHutq354l9P8fwJP_mKH4BHN2dDA</recordid><startdate>20131121</startdate><enddate>20131121</enddate><creator>Yin, Chih-Chien</creator><creator>Li, Arvin Huang-Te</creator><creator>Chao, Sheng D</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20131121</creationdate><title>Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential</title><author>Yin, Chih-Chien ; Li, Arvin Huang-Te ; Chao, Sheng D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-3d4c7a6a00fd1fdd7c35c54f0b14ad49cc67ab05da20ca01904d19c2a495272d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CHLOROFORM</topic><topic>Chloroform - chemistry</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Construction sites</topic><topic>Correlation</topic><topic>Diffusion effects</topic><topic>DIMERS</topic><topic>Distribution functions</topic><topic>Empirical analysis</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>INTERACTIONS</topic><topic>LIQUIDS</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Structure</topic><topic>PERTURBATION THEORY</topic><topic>Physics</topic><topic>POLARIZATION</topic><topic>Quantum Theory</topic><topic>Radial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Chih-Chien</creatorcontrib><creatorcontrib>Li, Arvin Huang-Te</creatorcontrib><creatorcontrib>Chao, Sheng D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Chih-Chien</au><au>Li, Arvin Huang-Te</au><au>Chao, Sheng D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-11-21</date><risdate>2013</risdate><volume>139</volume><issue>19</issue><spage>194501</spage><epage>194501</epage><pages>194501-194501</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24320333</pmid><doi>10.1063/1.4829760</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2013-11, Vol.139 (19), p.194501-194501 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22251429 |
source | MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | CHLOROFORM Chloroform - chemistry Computer simulation COMPUTERIZED SIMULATION Construction sites Correlation Diffusion effects DIMERS Distribution functions Empirical analysis INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY INTERACTIONS LIQUIDS MATHEMATICAL METHODS AND COMPUTING Mathematical models Molecular dynamics MOLECULAR DYNAMICS METHOD Molecular Dynamics Simulation Molecular Structure PERTURBATION THEORY Physics POLARIZATION Quantum Theory Radial distribution |
title | Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20chloroform%20structure%20from%20computer%20simulation%20with%20a%20full%20ab%20initio%20intermolecular%20interaction%20potential&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Yin,%20Chih-Chien&rft.date=2013-11-21&rft.volume=139&rft.issue=19&rft.spage=194501&rft.epage=194501&rft.pages=194501-194501&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4829760&rft_dat=%3Cproquest_osti_%3E1671585008%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129505996&rft_id=info:pmid/24320333&rfr_iscdi=true |