A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity

A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2013-12, Vol.84 (12), p.124902-124902
Hauptverfasser: Shen, Jun, Zhou, Jianqin, Gu, Caikang, Neill, Stuart, Michaelian, Kirk H, Fairbridge, Craig, Astrath, Nelson G C, Baesso, Mauro L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124902
container_issue 12
container_start_page 124902
container_title Review of scientific instruments
container_volume 84
creator Shen, Jun
Zhou, Jianqin
Gu, Caikang
Neill, Stuart
Michaelian, Kirk H
Fairbridge, Craig
Astrath, Nelson G C
Baesso, Mauro L
description A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10(-5) and (1.427 ± 0.009) × 10(-7) m(2) s(-1), respectively, in very good agreement with accepted literature values.
doi_str_mv 10.1063/1.4846255
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22251238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808091627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-622737724ca007005f26aab5db89a9911e2e81dbffe809eb0e5504bc6e61044a3</originalsourceid><addsrcrecordid>eNqFkctqHDEQRUVIiCdOFv4B05BNsmhb78fSDHmBIZtkaYRaXcIy3a2xpLbx30fDjO1lalO1OHXrFhehM4IvCJbsklxwzSUV4g3aEKxNryRlb9EGY8Z7qbg-QR9KucOtBCHv0QnlTCsu2AbdXHUlzrsphghjN6cRpi6k3NVbyLOb-kf3AJ13D7E-dQWm0Pu0lFgqLLWbwZU1w7yfU3he6cYYwlrifuUjehfcVODTsZ-iv9-__dn-7K9___i1vbruPVO89pJSxZSi3DuMVTMZqHRuEOOgjTOGEKCgyTiEABobGDAIgfngJUiCOXfsFH0-6KZSoy0-VvC3zekCvlpKqSCU6UZ9OVC7nO5XKNXOsXiYJrdAWoslGjd5IpuZ_6LcYEU0M_z19gt6l9a8tHctJVQpKY0Rjfp6oHxOpWQIdpfj7PKTJdjuQ7TEHkNs7PlRcR1mGF_I59TYP2h3lPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127766995</pqid></control><display><type>article</type><title>A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Shen, Jun ; Zhou, Jianqin ; Gu, Caikang ; Neill, Stuart ; Michaelian, Kirk H ; Fairbridge, Craig ; Astrath, Nelson G C ; Baesso, Mauro L</creator><creatorcontrib>Shen, Jun ; Zhou, Jianqin ; Gu, Caikang ; Neill, Stuart ; Michaelian, Kirk H ; Fairbridge, Craig ; Astrath, Nelson G C ; Baesso, Mauro L</creatorcontrib><description>A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10(-5) and (1.427 ± 0.009) × 10(-7) m(2) s(-1), respectively, in very good agreement with accepted literature values.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4846255</identifier><identifier>PMID: 24387453</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Accuracy ; CAVITIES ; Diffusivity ; Distilled water ; ENGINEERING ; Holes ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Laboratory apparatus ; LIQUIDS ; MEASURING INSTRUMENTS ; Scientific apparatus &amp; instruments ; TEMPERATURE MEASUREMENT ; THERMAL DIFFUSIVITY ; Thermal properties ; THERMAL RADIATION ; Thermodynamic properties</subject><ispartof>Review of scientific instruments, 2013-12, Vol.84 (12), p.124902-124902</ispartof><rights>2013 Crown.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-622737724ca007005f26aab5db89a9911e2e81dbffe809eb0e5504bc6e61044a3</citedby><cites>FETCH-LOGICAL-c374t-622737724ca007005f26aab5db89a9911e2e81dbffe809eb0e5504bc6e61044a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24387453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22251238$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Zhou, Jianqin</creatorcontrib><creatorcontrib>Gu, Caikang</creatorcontrib><creatorcontrib>Neill, Stuart</creatorcontrib><creatorcontrib>Michaelian, Kirk H</creatorcontrib><creatorcontrib>Fairbridge, Craig</creatorcontrib><creatorcontrib>Astrath, Nelson G C</creatorcontrib><creatorcontrib>Baesso, Mauro L</creatorcontrib><title>A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10(-5) and (1.427 ± 0.009) × 10(-7) m(2) s(-1), respectively, in very good agreement with accepted literature values.</description><subject>Accuracy</subject><subject>CAVITIES</subject><subject>Diffusivity</subject><subject>Distilled water</subject><subject>ENGINEERING</subject><subject>Holes</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Laboratory apparatus</subject><subject>LIQUIDS</subject><subject>MEASURING INSTRUMENTS</subject><subject>Scientific apparatus &amp; instruments</subject><subject>TEMPERATURE MEASUREMENT</subject><subject>THERMAL DIFFUSIVITY</subject><subject>Thermal properties</subject><subject>THERMAL RADIATION</subject><subject>Thermodynamic properties</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkctqHDEQRUVIiCdOFv4B05BNsmhb78fSDHmBIZtkaYRaXcIy3a2xpLbx30fDjO1lalO1OHXrFhehM4IvCJbsklxwzSUV4g3aEKxNryRlb9EGY8Z7qbg-QR9KucOtBCHv0QnlTCsu2AbdXHUlzrsphghjN6cRpi6k3NVbyLOb-kf3AJ13D7E-dQWm0Pu0lFgqLLWbwZU1w7yfU3he6cYYwlrifuUjehfcVODTsZ-iv9-__dn-7K9___i1vbruPVO89pJSxZSi3DuMVTMZqHRuEOOgjTOGEKCgyTiEABobGDAIgfngJUiCOXfsFH0-6KZSoy0-VvC3zekCvlpKqSCU6UZ9OVC7nO5XKNXOsXiYJrdAWoslGjd5IpuZ_6LcYEU0M_z19gt6l9a8tHctJVQpKY0Rjfp6oHxOpWQIdpfj7PKTJdjuQ7TEHkNs7PlRcR1mGF_I59TYP2h3lPk</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Shen, Jun</creator><creator>Zhou, Jianqin</creator><creator>Gu, Caikang</creator><creator>Neill, Stuart</creator><creator>Michaelian, Kirk H</creator><creator>Fairbridge, Craig</creator><creator>Astrath, Nelson G C</creator><creator>Baesso, Mauro L</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>7U5</scope><scope>OTOTI</scope></search><sort><creationdate>20131201</creationdate><title>A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity</title><author>Shen, Jun ; Zhou, Jianqin ; Gu, Caikang ; Neill, Stuart ; Michaelian, Kirk H ; Fairbridge, Craig ; Astrath, Nelson G C ; Baesso, Mauro L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-622737724ca007005f26aab5db89a9911e2e81dbffe809eb0e5504bc6e61044a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>CAVITIES</topic><topic>Diffusivity</topic><topic>Distilled water</topic><topic>ENGINEERING</topic><topic>Holes</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Laboratory apparatus</topic><topic>LIQUIDS</topic><topic>MEASURING INSTRUMENTS</topic><topic>Scientific apparatus &amp; instruments</topic><topic>TEMPERATURE MEASUREMENT</topic><topic>THERMAL DIFFUSIVITY</topic><topic>Thermal properties</topic><topic>THERMAL RADIATION</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Zhou, Jianqin</creatorcontrib><creatorcontrib>Gu, Caikang</creatorcontrib><creatorcontrib>Neill, Stuart</creatorcontrib><creatorcontrib>Michaelian, Kirk H</creatorcontrib><creatorcontrib>Fairbridge, Craig</creatorcontrib><creatorcontrib>Astrath, Nelson G C</creatorcontrib><creatorcontrib>Baesso, Mauro L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jun</au><au>Zhou, Jianqin</au><au>Gu, Caikang</au><au>Neill, Stuart</au><au>Michaelian, Kirk H</au><au>Fairbridge, Craig</au><au>Astrath, Nelson G C</au><au>Baesso, Mauro L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>84</volume><issue>12</issue><spage>124902</spage><epage>124902</epage><pages>124902-124902</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10(-5) and (1.427 ± 0.009) × 10(-7) m(2) s(-1), respectively, in very good agreement with accepted literature values.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24387453</pmid><doi>10.1063/1.4846255</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2013-12, Vol.84 (12), p.124902-124902
issn 0034-6748
1089-7623
language eng
recordid cdi_osti_scitechconnect_22251238
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Accuracy
CAVITIES
Diffusivity
Distilled water
ENGINEERING
Holes
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Laboratory apparatus
LIQUIDS
MEASURING INSTRUMENTS
Scientific apparatus & instruments
TEMPERATURE MEASUREMENT
THERMAL DIFFUSIVITY
Thermal properties
THERMAL RADIATION
Thermodynamic properties
title A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simplified%20model%20for%20thermal-wave%20cavity%20self-consistent%20measurement%20of%20thermal%20diffusivity&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Shen,%20Jun&rft.date=2013-12-01&rft.volume=84&rft.issue=12&rft.spage=124902&rft.epage=124902&rft.pages=124902-124902&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/10.1063/1.4846255&rft_dat=%3Cproquest_osti_%3E1808091627%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127766995&rft_id=info:pmid/24387453&rfr_iscdi=true