A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity
A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2013-12, Vol.84 (12), p.124902-124902 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124902 |
---|---|
container_issue | 12 |
container_start_page | 124902 |
container_title | Review of scientific instruments |
container_volume | 84 |
creator | Shen, Jun Zhou, Jianqin Gu, Caikang Neill, Stuart Michaelian, Kirk H Fairbridge, Craig Astrath, Nelson G C Baesso, Mauro L |
description | A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10(-5) and (1.427 ± 0.009) × 10(-7) m(2) s(-1), respectively, in very good agreement with accepted literature values. |
doi_str_mv | 10.1063/1.4846255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22251238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808091627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-622737724ca007005f26aab5db89a9911e2e81dbffe809eb0e5504bc6e61044a3</originalsourceid><addsrcrecordid>eNqFkctqHDEQRUVIiCdOFv4B05BNsmhb78fSDHmBIZtkaYRaXcIy3a2xpLbx30fDjO1lalO1OHXrFhehM4IvCJbsklxwzSUV4g3aEKxNryRlb9EGY8Z7qbg-QR9KucOtBCHv0QnlTCsu2AbdXHUlzrsphghjN6cRpi6k3NVbyLOb-kf3AJ13D7E-dQWm0Pu0lFgqLLWbwZU1w7yfU3he6cYYwlrifuUjehfcVODTsZ-iv9-__dn-7K9___i1vbruPVO89pJSxZSi3DuMVTMZqHRuEOOgjTOGEKCgyTiEABobGDAIgfngJUiCOXfsFH0-6KZSoy0-VvC3zekCvlpKqSCU6UZ9OVC7nO5XKNXOsXiYJrdAWoslGjd5IpuZ_6LcYEU0M_z19gt6l9a8tHctJVQpKY0Rjfp6oHxOpWQIdpfj7PKTJdjuQ7TEHkNs7PlRcR1mGF_I59TYP2h3lPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127766995</pqid></control><display><type>article</type><title>A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Shen, Jun ; Zhou, Jianqin ; Gu, Caikang ; Neill, Stuart ; Michaelian, Kirk H ; Fairbridge, Craig ; Astrath, Nelson G C ; Baesso, Mauro L</creator><creatorcontrib>Shen, Jun ; Zhou, Jianqin ; Gu, Caikang ; Neill, Stuart ; Michaelian, Kirk H ; Fairbridge, Craig ; Astrath, Nelson G C ; Baesso, Mauro L</creatorcontrib><description>A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10(-5) and (1.427 ± 0.009) × 10(-7) m(2) s(-1), respectively, in very good agreement with accepted literature values.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4846255</identifier><identifier>PMID: 24387453</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Accuracy ; CAVITIES ; Diffusivity ; Distilled water ; ENGINEERING ; Holes ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Laboratory apparatus ; LIQUIDS ; MEASURING INSTRUMENTS ; Scientific apparatus & instruments ; TEMPERATURE MEASUREMENT ; THERMAL DIFFUSIVITY ; Thermal properties ; THERMAL RADIATION ; Thermodynamic properties</subject><ispartof>Review of scientific instruments, 2013-12, Vol.84 (12), p.124902-124902</ispartof><rights>2013 Crown.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-622737724ca007005f26aab5db89a9911e2e81dbffe809eb0e5504bc6e61044a3</citedby><cites>FETCH-LOGICAL-c374t-622737724ca007005f26aab5db89a9911e2e81dbffe809eb0e5504bc6e61044a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24387453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22251238$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Zhou, Jianqin</creatorcontrib><creatorcontrib>Gu, Caikang</creatorcontrib><creatorcontrib>Neill, Stuart</creatorcontrib><creatorcontrib>Michaelian, Kirk H</creatorcontrib><creatorcontrib>Fairbridge, Craig</creatorcontrib><creatorcontrib>Astrath, Nelson G C</creatorcontrib><creatorcontrib>Baesso, Mauro L</creatorcontrib><title>A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10(-5) and (1.427 ± 0.009) × 10(-7) m(2) s(-1), respectively, in very good agreement with accepted literature values.</description><subject>Accuracy</subject><subject>CAVITIES</subject><subject>Diffusivity</subject><subject>Distilled water</subject><subject>ENGINEERING</subject><subject>Holes</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Laboratory apparatus</subject><subject>LIQUIDS</subject><subject>MEASURING INSTRUMENTS</subject><subject>Scientific apparatus & instruments</subject><subject>TEMPERATURE MEASUREMENT</subject><subject>THERMAL DIFFUSIVITY</subject><subject>Thermal properties</subject><subject>THERMAL RADIATION</subject><subject>Thermodynamic properties</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkctqHDEQRUVIiCdOFv4B05BNsmhb78fSDHmBIZtkaYRaXcIy3a2xpLbx30fDjO1lalO1OHXrFhehM4IvCJbsklxwzSUV4g3aEKxNryRlb9EGY8Z7qbg-QR9KucOtBCHv0QnlTCsu2AbdXHUlzrsphghjN6cRpi6k3NVbyLOb-kf3AJ13D7E-dQWm0Pu0lFgqLLWbwZU1w7yfU3he6cYYwlrifuUjehfcVODTsZ-iv9-__dn-7K9___i1vbruPVO89pJSxZSi3DuMVTMZqHRuEOOgjTOGEKCgyTiEABobGDAIgfngJUiCOXfsFH0-6KZSoy0-VvC3zekCvlpKqSCU6UZ9OVC7nO5XKNXOsXiYJrdAWoslGjd5IpuZ_6LcYEU0M_z19gt6l9a8tHctJVQpKY0Rjfp6oHxOpWQIdpfj7PKTJdjuQ7TEHkNs7PlRcR1mGF_I59TYP2h3lPk</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Shen, Jun</creator><creator>Zhou, Jianqin</creator><creator>Gu, Caikang</creator><creator>Neill, Stuart</creator><creator>Michaelian, Kirk H</creator><creator>Fairbridge, Craig</creator><creator>Astrath, Nelson G C</creator><creator>Baesso, Mauro L</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>7U5</scope><scope>OTOTI</scope></search><sort><creationdate>20131201</creationdate><title>A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity</title><author>Shen, Jun ; Zhou, Jianqin ; Gu, Caikang ; Neill, Stuart ; Michaelian, Kirk H ; Fairbridge, Craig ; Astrath, Nelson G C ; Baesso, Mauro L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-622737724ca007005f26aab5db89a9911e2e81dbffe809eb0e5504bc6e61044a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>CAVITIES</topic><topic>Diffusivity</topic><topic>Distilled water</topic><topic>ENGINEERING</topic><topic>Holes</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Laboratory apparatus</topic><topic>LIQUIDS</topic><topic>MEASURING INSTRUMENTS</topic><topic>Scientific apparatus & instruments</topic><topic>TEMPERATURE MEASUREMENT</topic><topic>THERMAL DIFFUSIVITY</topic><topic>Thermal properties</topic><topic>THERMAL RADIATION</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Zhou, Jianqin</creatorcontrib><creatorcontrib>Gu, Caikang</creatorcontrib><creatorcontrib>Neill, Stuart</creatorcontrib><creatorcontrib>Michaelian, Kirk H</creatorcontrib><creatorcontrib>Fairbridge, Craig</creatorcontrib><creatorcontrib>Astrath, Nelson G C</creatorcontrib><creatorcontrib>Baesso, Mauro L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jun</au><au>Zhou, Jianqin</au><au>Gu, Caikang</au><au>Neill, Stuart</au><au>Michaelian, Kirk H</au><au>Fairbridge, Craig</au><au>Astrath, Nelson G C</au><au>Baesso, Mauro L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>84</volume><issue>12</issue><spage>124902</spage><epage>124902</epage><pages>124902-124902</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10(-5) and (1.427 ± 0.009) × 10(-7) m(2) s(-1), respectively, in very good agreement with accepted literature values.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24387453</pmid><doi>10.1063/1.4846255</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2013-12, Vol.84 (12), p.124902-124902 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_22251238 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Accuracy CAVITIES Diffusivity Distilled water ENGINEERING Holes INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Laboratory apparatus LIQUIDS MEASURING INSTRUMENTS Scientific apparatus & instruments TEMPERATURE MEASUREMENT THERMAL DIFFUSIVITY Thermal properties THERMAL RADIATION Thermodynamic properties |
title | A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simplified%20model%20for%20thermal-wave%20cavity%20self-consistent%20measurement%20of%20thermal%20diffusivity&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Shen,%20Jun&rft.date=2013-12-01&rft.volume=84&rft.issue=12&rft.spage=124902&rft.epage=124902&rft.pages=124902-124902&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/10.1063/1.4846255&rft_dat=%3Cproquest_osti_%3E1808091627%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127766995&rft_id=info:pmid/24387453&rfr_iscdi=true |