Geometric uncertainty relation for mixed quantum states

In this paper we use symplectic reduction in an Uhlmann bundle to construct a principal fiber bundle over a general space of unitarily equivalent mixed quantum states. The bundle, which generalizes the Hopf bundle for pure states, gives in a canonical way rise to a Riemannian metric and a symplectic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2014-04, Vol.55 (4)
Hauptverfasser: Andersson, Ole, Heydari, Hoshang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of mathematical physics
container_volume 55
creator Andersson, Ole
Heydari, Hoshang
description In this paper we use symplectic reduction in an Uhlmann bundle to construct a principal fiber bundle over a general space of unitarily equivalent mixed quantum states. The bundle, which generalizes the Hopf bundle for pure states, gives in a canonical way rise to a Riemannian metric and a symplectic structure on the base space. With these we derive a geometric uncertainty relation for observables acting on quantum systems in mixed states. We also give a geometric proof of the classical Robertson-Schrödinger uncertainty relation, and we compare the two. They turn out not to be equivalent, because of the multiple dimensions of the gauge group for general mixed states. We give examples of observables for which the geometric relation provides a stronger estimate than that of Robertson and Schrödinger, and vice versa.
doi_str_mv 10.1063/1.4871548
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22250770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22250770</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_222507703</originalsourceid><addsrcrecordid>eNqNyksOwiAQAFBiNLF-Ft6AxHV1oLTg2vg5gPuG4DRiWogwTfT2bjyAq7d5jG0E7AQ01V7slNGiVmbCCgHmUOqmNlNWAEhZSmXMnC1yfgIIYZQqmL5gHJCSd3wMDhNZH-jDE_aWfAy8i4kP_o13_hptoHHgmSxhXrFZZ_uM659Ltj2fbsdrGTP5NjtP6B4uhoCOWillDVpD9d_6AvhSO4k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric uncertainty relation for mixed quantum states</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Andersson, Ole ; Heydari, Hoshang</creator><creatorcontrib>Andersson, Ole ; Heydari, Hoshang</creatorcontrib><description>In this paper we use symplectic reduction in an Uhlmann bundle to construct a principal fiber bundle over a general space of unitarily equivalent mixed quantum states. The bundle, which generalizes the Hopf bundle for pure states, gives in a canonical way rise to a Riemannian metric and a symplectic structure on the base space. With these we derive a geometric uncertainty relation for observables acting on quantum systems in mixed states. We also give a geometric proof of the classical Robertson-Schrödinger uncertainty relation, and we compare the two. They turn out not to be equivalent, because of the multiple dimensions of the gauge group for general mixed states. We give examples of observables for which the geometric relation provides a stronger estimate than that of Robertson and Schrödinger, and vice versa.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4871548</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; GEOMETRY ; MATHEMATICAL SPACE ; METRICS ; MIXED STATES ; PURE STATES</subject><ispartof>Journal of mathematical physics, 2014-04, Vol.55 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22250770$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Andersson, Ole</creatorcontrib><creatorcontrib>Heydari, Hoshang</creatorcontrib><title>Geometric uncertainty relation for mixed quantum states</title><title>Journal of mathematical physics</title><description>In this paper we use symplectic reduction in an Uhlmann bundle to construct a principal fiber bundle over a general space of unitarily equivalent mixed quantum states. The bundle, which generalizes the Hopf bundle for pure states, gives in a canonical way rise to a Riemannian metric and a symplectic structure on the base space. With these we derive a geometric uncertainty relation for observables acting on quantum systems in mixed states. We also give a geometric proof of the classical Robertson-Schrödinger uncertainty relation, and we compare the two. They turn out not to be equivalent, because of the multiple dimensions of the gauge group for general mixed states. We give examples of observables for which the geometric relation provides a stronger estimate than that of Robertson and Schrödinger, and vice versa.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>GEOMETRY</subject><subject>MATHEMATICAL SPACE</subject><subject>METRICS</subject><subject>MIXED STATES</subject><subject>PURE STATES</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNyksOwiAQAFBiNLF-Ft6AxHV1oLTg2vg5gPuG4DRiWogwTfT2bjyAq7d5jG0E7AQ01V7slNGiVmbCCgHmUOqmNlNWAEhZSmXMnC1yfgIIYZQqmL5gHJCSd3wMDhNZH-jDE_aWfAy8i4kP_o13_hptoHHgmSxhXrFZZ_uM659Ltj2fbsdrGTP5NjtP6B4uhoCOWillDVpD9d_6AvhSO4k</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>Andersson, Ole</creator><creator>Heydari, Hoshang</creator><scope>OTOTI</scope></search><sort><creationdate>20140415</creationdate><title>Geometric uncertainty relation for mixed quantum states</title><author>Andersson, Ole ; Heydari, Hoshang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_222507703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>GEOMETRY</topic><topic>MATHEMATICAL SPACE</topic><topic>METRICS</topic><topic>MIXED STATES</topic><topic>PURE STATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersson, Ole</creatorcontrib><creatorcontrib>Heydari, Hoshang</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersson, Ole</au><au>Heydari, Hoshang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric uncertainty relation for mixed quantum states</atitle><jtitle>Journal of mathematical physics</jtitle><date>2014-04-15</date><risdate>2014</risdate><volume>55</volume><issue>4</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>In this paper we use symplectic reduction in an Uhlmann bundle to construct a principal fiber bundle over a general space of unitarily equivalent mixed quantum states. The bundle, which generalizes the Hopf bundle for pure states, gives in a canonical way rise to a Riemannian metric and a symplectic structure on the base space. With these we derive a geometric uncertainty relation for observables acting on quantum systems in mixed states. We also give a geometric proof of the classical Robertson-Schrödinger uncertainty relation, and we compare the two. They turn out not to be equivalent, because of the multiple dimensions of the gauge group for general mixed states. We give examples of observables for which the geometric relation provides a stronger estimate than that of Robertson and Schrödinger, and vice versa.</abstract><cop>United States</cop><doi>10.1063/1.4871548</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2014-04, Vol.55 (4)
issn 0022-2488
1089-7658
language eng
recordid cdi_osti_scitechconnect_22250770
source AIP Journals Complete; Alma/SFX Local Collection
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
GEOMETRY
MATHEMATICAL SPACE
METRICS
MIXED STATES
PURE STATES
title Geometric uncertainty relation for mixed quantum states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20uncertainty%20relation%20for%20mixed%20quantum%20states&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Andersson,%20Ole&rft.date=2014-04-15&rft.volume=55&rft.issue=4&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4871548&rft_dat=%3Costi%3E22250770%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true