Basis adaptation in homogeneous chaos spaces

We present a new method for the characterization of subspaces associated with low-dimensional quantities of interest (QoI). The probability density function of these QoI is found to be concentrated around one-dimensional subspaces for which we develop projection operators. Our approach builds on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2014-02, Vol.259
Hauptverfasser: Tipireddy, Ramakrishna, Ghanem, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of computational physics
container_volume 259
creator Tipireddy, Ramakrishna
Ghanem, Roger
description We present a new method for the characterization of subspaces associated with low-dimensional quantities of interest (QoI). The probability density function of these QoI is found to be concentrated around one-dimensional subspaces for which we develop projection operators. Our approach builds on the properties of Gaussian Hilbert spaces and associated tensor product spaces.
doi_str_mv 10.1016/J.JCP.2013.12.009
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22230868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22230868</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_222308683</originalsourceid><addsrcrecordid>eNqNyr0KwjAQAOBDFKw_D-AWcLXxLtWarIoinRzcS4jRRjQpXHx_Fx_A6Vs-gAWhJKR63cjmcJEKqZKkJKIZQEFosFQ7qodQICoqjTE0hgnzExH1dqMLWO0tBxb2Zvtsc0hRhCi69E4PH336sHCdTSy4t87zDEZ3-2I__zmF5el4PZzLxDm07EL2rnMpRu9yq5SqUNe6-m99AVa7OKs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Basis adaptation in homogeneous chaos spaces</title><source>Elsevier ScienceDirect Journals</source><creator>Tipireddy, Ramakrishna ; Ghanem, Roger</creator><creatorcontrib>Tipireddy, Ramakrishna ; Ghanem, Roger</creatorcontrib><description>We present a new method for the characterization of subspaces associated with low-dimensional quantities of interest (QoI). The probability density function of these QoI is found to be concentrated around one-dimensional subspaces for which we develop projection operators. Our approach builds on the properties of Gaussian Hilbert spaces and associated tensor product spaces.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/J.JCP.2013.12.009</identifier><language>eng</language><publisher>United States</publisher><subject>CHAOS THEORY ; HILBERT SPACE ; MATHEMATICAL METHODS AND COMPUTING ; POLYNOMIALS ; PROBABILITY DENSITY FUNCTIONS ; PROJECTION OPERATORS ; STOCHASTIC PROCESSES ; TENSORS</subject><ispartof>Journal of computational physics, 2014-02, Vol.259</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22230868$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tipireddy, Ramakrishna</creatorcontrib><creatorcontrib>Ghanem, Roger</creatorcontrib><title>Basis adaptation in homogeneous chaos spaces</title><title>Journal of computational physics</title><description>We present a new method for the characterization of subspaces associated with low-dimensional quantities of interest (QoI). The probability density function of these QoI is found to be concentrated around one-dimensional subspaces for which we develop projection operators. Our approach builds on the properties of Gaussian Hilbert spaces and associated tensor product spaces.</description><subject>CHAOS THEORY</subject><subject>HILBERT SPACE</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>POLYNOMIALS</subject><subject>PROBABILITY DENSITY FUNCTIONS</subject><subject>PROJECTION OPERATORS</subject><subject>STOCHASTIC PROCESSES</subject><subject>TENSORS</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNyr0KwjAQAOBDFKw_D-AWcLXxLtWarIoinRzcS4jRRjQpXHx_Fx_A6Vs-gAWhJKR63cjmcJEKqZKkJKIZQEFosFQ7qodQICoqjTE0hgnzExH1dqMLWO0tBxb2Zvtsc0hRhCi69E4PH336sHCdTSy4t87zDEZ3-2I__zmF5el4PZzLxDm07EL2rnMpRu9yq5SqUNe6-m99AVa7OKs</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Tipireddy, Ramakrishna</creator><creator>Ghanem, Roger</creator><scope>OTOTI</scope></search><sort><creationdate>20140215</creationdate><title>Basis adaptation in homogeneous chaos spaces</title><author>Tipireddy, Ramakrishna ; Ghanem, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_222308683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CHAOS THEORY</topic><topic>HILBERT SPACE</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>POLYNOMIALS</topic><topic>PROBABILITY DENSITY FUNCTIONS</topic><topic>PROJECTION OPERATORS</topic><topic>STOCHASTIC PROCESSES</topic><topic>TENSORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tipireddy, Ramakrishna</creatorcontrib><creatorcontrib>Ghanem, Roger</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tipireddy, Ramakrishna</au><au>Ghanem, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basis adaptation in homogeneous chaos spaces</atitle><jtitle>Journal of computational physics</jtitle><date>2014-02-15</date><risdate>2014</risdate><volume>259</volume><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a new method for the characterization of subspaces associated with low-dimensional quantities of interest (QoI). The probability density function of these QoI is found to be concentrated around one-dimensional subspaces for which we develop projection operators. Our approach builds on the properties of Gaussian Hilbert spaces and associated tensor product spaces.</abstract><cop>United States</cop><doi>10.1016/J.JCP.2013.12.009</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2014-02, Vol.259
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_22230868
source Elsevier ScienceDirect Journals
subjects CHAOS THEORY
HILBERT SPACE
MATHEMATICAL METHODS AND COMPUTING
POLYNOMIALS
PROBABILITY DENSITY FUNCTIONS
PROJECTION OPERATORS
STOCHASTIC PROCESSES
TENSORS
title Basis adaptation in homogeneous chaos spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basis%20adaptation%20in%20homogeneous%20chaos%20spaces&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Tipireddy,%20Ramakrishna&rft.date=2014-02-15&rft.volume=259&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/J.JCP.2013.12.009&rft_dat=%3Costi%3E22230868%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true