High power laser coupling to carbon nano-tubes and ion Coulomb explosion
Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific freq...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2013-09, Vol.20 (9) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 20 |
creator | K, Magesh Kumar K Tripathi, V. K. |
description | Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at
ω
=
ω
p
/
2
, where
ω
p
is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches
ω
p
=
2
ω
, the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc
, the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy. |
doi_str_mv | 10.1063/1.4819778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22224192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129494461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-80dac72b351ed5ee59a5e099f747019a153e7cefa4232db2a46d0cb55a162b4e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqksllspSiVii4UXAXMplMHZkmY5Lx8vamtNiF4Fmcc_j5-M8FgHOMZhjx8hrPaIWlENUBmGBUyUJwQQ83vUAF5_TlGJzE-IYQopxVE7BYdKtXOPhPG2CvY87Gj0PfuRVMHhodau-g084XaaxthNo1sMvS3I-9X9fQfg29j1k5BUet7qM929UpeL67fZoviuXj_cP8ZlmYkrFUVKjRRpC6ZNg2zFomNbNIylZQgbDUmJVWGNtqSkrS1ERT3iBTM6YxJzW15RRcbH19TJ2KpkvWvBrvnDVJkRwUS7KnhuDfRxuTevNjcHkxRTCRVFLKcaYut5QJPsZgWzWEbq3Dt8JIbd6psNq9M7NXW3YzUqd88S_84cMeVEPT_gf_df4BHsmCZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129494461</pqid></control><display><type>article</type><title>High power laser coupling to carbon nano-tubes and ion Coulomb explosion</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>K, Magesh Kumar K ; Tripathi, V. K.</creator><creatorcontrib>K, Magesh Kumar K ; Tripathi, V. K.</creatorcontrib><description>Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at
ω
=
ω
p
/
2
, where
ω
p
is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches
ω
p
=
2
ω
, the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc
, the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4819778</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>AMPLITUDES ; ATTENUATION ; Axial stress ; BEAMS ; CARBON NANOTUBES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COUPLING ; CYLINDERS ; DISSOCIATION ; DISTANCE ; DISTRIBUTION FUNCTIONS ; Electron energy ; ELECTRON TEMPERATURE ; ELECTRONS ; ENERGY DEPENDENCE ; EXCURSIONS ; EXPANSION ; Free electrons ; Gaussian beams (optics) ; HEATING RATE ; INTERACTIONS ; LANGMUIR FREQUENCY ; Laser arrays ; Laser beam heating ; LASERS ; NONLINEAR OPTICS ; NONLINEAR PROBLEMS ; PLASMA ; Plasma cylinders ; Plasma physics ; POLARIZATION ; Propagation ; RESONANCE ; SURFACES ; Tensors ; Tubes</subject><ispartof>Physics of plasmas, 2013-09, Vol.20 (9)</ispartof><rights>AIP Publishing LLC</rights><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-80dac72b351ed5ee59a5e099f747019a153e7cefa4232db2a46d0cb55a162b4e3</citedby><cites>FETCH-LOGICAL-c355t-80dac72b351ed5ee59a5e099f747019a153e7cefa4232db2a46d0cb55a162b4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4819778$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,782,786,796,887,1561,4514,27931,27932,76392,76398</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22224192$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>K, Magesh Kumar K</creatorcontrib><creatorcontrib>Tripathi, V. K.</creatorcontrib><title>High power laser coupling to carbon nano-tubes and ion Coulomb explosion</title><title>Physics of plasmas</title><description>Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at
ω
=
ω
p
/
2
, where
ω
p
is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches
ω
p
=
2
ω
, the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc
, the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy.</description><subject>AMPLITUDES</subject><subject>ATTENUATION</subject><subject>Axial stress</subject><subject>BEAMS</subject><subject>CARBON NANOTUBES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COUPLING</subject><subject>CYLINDERS</subject><subject>DISSOCIATION</subject><subject>DISTANCE</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>Electron energy</subject><subject>ELECTRON TEMPERATURE</subject><subject>ELECTRONS</subject><subject>ENERGY DEPENDENCE</subject><subject>EXCURSIONS</subject><subject>EXPANSION</subject><subject>Free electrons</subject><subject>Gaussian beams (optics)</subject><subject>HEATING RATE</subject><subject>INTERACTIONS</subject><subject>LANGMUIR FREQUENCY</subject><subject>Laser arrays</subject><subject>Laser beam heating</subject><subject>LASERS</subject><subject>NONLINEAR OPTICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PLASMA</subject><subject>Plasma cylinders</subject><subject>Plasma physics</subject><subject>POLARIZATION</subject><subject>Propagation</subject><subject>RESONANCE</subject><subject>SURFACES</subject><subject>Tensors</subject><subject>Tubes</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqksllspSiVii4UXAXMplMHZkmY5Lx8vamtNiF4Fmcc_j5-M8FgHOMZhjx8hrPaIWlENUBmGBUyUJwQQ83vUAF5_TlGJzE-IYQopxVE7BYdKtXOPhPG2CvY87Gj0PfuRVMHhodau-g084XaaxthNo1sMvS3I-9X9fQfg29j1k5BUet7qM929UpeL67fZoviuXj_cP8ZlmYkrFUVKjRRpC6ZNg2zFomNbNIylZQgbDUmJVWGNtqSkrS1ERT3iBTM6YxJzW15RRcbH19TJ2KpkvWvBrvnDVJkRwUS7KnhuDfRxuTevNjcHkxRTCRVFLKcaYut5QJPsZgWzWEbq3Dt8JIbd6psNq9M7NXW3YzUqd88S_84cMeVEPT_gf_df4BHsmCZA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>K, Magesh Kumar K</creator><creator>Tripathi, V. K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20130901</creationdate><title>High power laser coupling to carbon nano-tubes and ion Coulomb explosion</title><author>K, Magesh Kumar K ; Tripathi, V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-80dac72b351ed5ee59a5e099f747019a153e7cefa4232db2a46d0cb55a162b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AMPLITUDES</topic><topic>ATTENUATION</topic><topic>Axial stress</topic><topic>BEAMS</topic><topic>CARBON NANOTUBES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COUPLING</topic><topic>CYLINDERS</topic><topic>DISSOCIATION</topic><topic>DISTANCE</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>Electron energy</topic><topic>ELECTRON TEMPERATURE</topic><topic>ELECTRONS</topic><topic>ENERGY DEPENDENCE</topic><topic>EXCURSIONS</topic><topic>EXPANSION</topic><topic>Free electrons</topic><topic>Gaussian beams (optics)</topic><topic>HEATING RATE</topic><topic>INTERACTIONS</topic><topic>LANGMUIR FREQUENCY</topic><topic>Laser arrays</topic><topic>Laser beam heating</topic><topic>LASERS</topic><topic>NONLINEAR OPTICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PLASMA</topic><topic>Plasma cylinders</topic><topic>Plasma physics</topic><topic>POLARIZATION</topic><topic>Propagation</topic><topic>RESONANCE</topic><topic>SURFACES</topic><topic>Tensors</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>K, Magesh Kumar K</creatorcontrib><creatorcontrib>Tripathi, V. K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>K, Magesh Kumar K</au><au>Tripathi, V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High power laser coupling to carbon nano-tubes and ion Coulomb explosion</atitle><jtitle>Physics of plasmas</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>20</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at
ω
=
ω
p
/
2
, where
ω
p
is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches
ω
p
=
2
ω
, the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc
, the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4819778</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2013-09, Vol.20 (9) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_22224192 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | AMPLITUDES ATTENUATION Axial stress BEAMS CARBON NANOTUBES CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY COUPLING CYLINDERS DISSOCIATION DISTANCE DISTRIBUTION FUNCTIONS Electron energy ELECTRON TEMPERATURE ELECTRONS ENERGY DEPENDENCE EXCURSIONS EXPANSION Free electrons Gaussian beams (optics) HEATING RATE INTERACTIONS LANGMUIR FREQUENCY Laser arrays Laser beam heating LASERS NONLINEAR OPTICS NONLINEAR PROBLEMS PLASMA Plasma cylinders Plasma physics POLARIZATION Propagation RESONANCE SURFACES Tensors Tubes |
title | High power laser coupling to carbon nano-tubes and ion Coulomb explosion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T06%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20power%20laser%20coupling%20to%20carbon%20nano-tubes%20and%20ion%20Coulomb%20explosion&rft.jtitle=Physics%20of%20plasmas&rft.au=K,%20Magesh%20Kumar%20K&rft.date=2013-09-01&rft.volume=20&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4819778&rft_dat=%3Cproquest_osti_%3E2129494461%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129494461&rft_id=info:pmid/&rfr_iscdi=true |