High power laser coupling to carbon nano-tubes and ion Coulomb explosion

Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific freq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2013-09, Vol.20 (9)
Hauptverfasser: K, Magesh Kumar K, Tripathi, V. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of plasmas
container_volume 20
creator K, Magesh Kumar K
Tripathi, V. K.
description Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at ω = ω p / 2 , where ω p is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches ω p = 2 ω , the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc , the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy.
doi_str_mv 10.1063/1.4819778
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22224192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129494461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-80dac72b351ed5ee59a5e099f747019a153e7cefa4232db2a46d0cb55a162b4e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqksllspSiVii4UXAXMplMHZkmY5Lx8vamtNiF4Fmcc_j5-M8FgHOMZhjx8hrPaIWlENUBmGBUyUJwQQ83vUAF5_TlGJzE-IYQopxVE7BYdKtXOPhPG2CvY87Gj0PfuRVMHhodau-g084XaaxthNo1sMvS3I-9X9fQfg29j1k5BUet7qM929UpeL67fZoviuXj_cP8ZlmYkrFUVKjRRpC6ZNg2zFomNbNIylZQgbDUmJVWGNtqSkrS1ERT3iBTM6YxJzW15RRcbH19TJ2KpkvWvBrvnDVJkRwUS7KnhuDfRxuTevNjcHkxRTCRVFLKcaYut5QJPsZgWzWEbq3Dt8JIbd6psNq9M7NXW3YzUqd88S_84cMeVEPT_gf_df4BHsmCZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129494461</pqid></control><display><type>article</type><title>High power laser coupling to carbon nano-tubes and ion Coulomb explosion</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>K, Magesh Kumar K ; Tripathi, V. K.</creator><creatorcontrib>K, Magesh Kumar K ; Tripathi, V. K.</creatorcontrib><description>Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at ω = ω p / 2 , where ω p is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches ω p = 2 ω , the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc , the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4819778</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>AMPLITUDES ; ATTENUATION ; Axial stress ; BEAMS ; CARBON NANOTUBES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COUPLING ; CYLINDERS ; DISSOCIATION ; DISTANCE ; DISTRIBUTION FUNCTIONS ; Electron energy ; ELECTRON TEMPERATURE ; ELECTRONS ; ENERGY DEPENDENCE ; EXCURSIONS ; EXPANSION ; Free electrons ; Gaussian beams (optics) ; HEATING RATE ; INTERACTIONS ; LANGMUIR FREQUENCY ; Laser arrays ; Laser beam heating ; LASERS ; NONLINEAR OPTICS ; NONLINEAR PROBLEMS ; PLASMA ; Plasma cylinders ; Plasma physics ; POLARIZATION ; Propagation ; RESONANCE ; SURFACES ; Tensors ; Tubes</subject><ispartof>Physics of plasmas, 2013-09, Vol.20 (9)</ispartof><rights>AIP Publishing LLC</rights><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-80dac72b351ed5ee59a5e099f747019a153e7cefa4232db2a46d0cb55a162b4e3</citedby><cites>FETCH-LOGICAL-c355t-80dac72b351ed5ee59a5e099f747019a153e7cefa4232db2a46d0cb55a162b4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.4819778$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,782,786,796,887,1561,4514,27931,27932,76392,76398</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22224192$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>K, Magesh Kumar K</creatorcontrib><creatorcontrib>Tripathi, V. K.</creatorcontrib><title>High power laser coupling to carbon nano-tubes and ion Coulomb explosion</title><title>Physics of plasmas</title><description>Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at ω = ω p / 2 , where ω p is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches ω p = 2 ω , the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc , the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy.</description><subject>AMPLITUDES</subject><subject>ATTENUATION</subject><subject>Axial stress</subject><subject>BEAMS</subject><subject>CARBON NANOTUBES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COUPLING</subject><subject>CYLINDERS</subject><subject>DISSOCIATION</subject><subject>DISTANCE</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>Electron energy</subject><subject>ELECTRON TEMPERATURE</subject><subject>ELECTRONS</subject><subject>ENERGY DEPENDENCE</subject><subject>EXCURSIONS</subject><subject>EXPANSION</subject><subject>Free electrons</subject><subject>Gaussian beams (optics)</subject><subject>HEATING RATE</subject><subject>INTERACTIONS</subject><subject>LANGMUIR FREQUENCY</subject><subject>Laser arrays</subject><subject>Laser beam heating</subject><subject>LASERS</subject><subject>NONLINEAR OPTICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PLASMA</subject><subject>Plasma cylinders</subject><subject>Plasma physics</subject><subject>POLARIZATION</subject><subject>Propagation</subject><subject>RESONANCE</subject><subject>SURFACES</subject><subject>Tensors</subject><subject>Tubes</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqksllspSiVii4UXAXMplMHZkmY5Lx8vamtNiF4Fmcc_j5-M8FgHOMZhjx8hrPaIWlENUBmGBUyUJwQQ83vUAF5_TlGJzE-IYQopxVE7BYdKtXOPhPG2CvY87Gj0PfuRVMHhodau-g084XaaxthNo1sMvS3I-9X9fQfg29j1k5BUet7qM929UpeL67fZoviuXj_cP8ZlmYkrFUVKjRRpC6ZNg2zFomNbNIylZQgbDUmJVWGNtqSkrS1ERT3iBTM6YxJzW15RRcbH19TJ2KpkvWvBrvnDVJkRwUS7KnhuDfRxuTevNjcHkxRTCRVFLKcaYut5QJPsZgWzWEbq3Dt8JIbd6psNq9M7NXW3YzUqd88S_84cMeVEPT_gf_df4BHsmCZA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>K, Magesh Kumar K</creator><creator>Tripathi, V. K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20130901</creationdate><title>High power laser coupling to carbon nano-tubes and ion Coulomb explosion</title><author>K, Magesh Kumar K ; Tripathi, V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-80dac72b351ed5ee59a5e099f747019a153e7cefa4232db2a46d0cb55a162b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AMPLITUDES</topic><topic>ATTENUATION</topic><topic>Axial stress</topic><topic>BEAMS</topic><topic>CARBON NANOTUBES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COUPLING</topic><topic>CYLINDERS</topic><topic>DISSOCIATION</topic><topic>DISTANCE</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>Electron energy</topic><topic>ELECTRON TEMPERATURE</topic><topic>ELECTRONS</topic><topic>ENERGY DEPENDENCE</topic><topic>EXCURSIONS</topic><topic>EXPANSION</topic><topic>Free electrons</topic><topic>Gaussian beams (optics)</topic><topic>HEATING RATE</topic><topic>INTERACTIONS</topic><topic>LANGMUIR FREQUENCY</topic><topic>Laser arrays</topic><topic>Laser beam heating</topic><topic>LASERS</topic><topic>NONLINEAR OPTICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PLASMA</topic><topic>Plasma cylinders</topic><topic>Plasma physics</topic><topic>POLARIZATION</topic><topic>Propagation</topic><topic>RESONANCE</topic><topic>SURFACES</topic><topic>Tensors</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>K, Magesh Kumar K</creatorcontrib><creatorcontrib>Tripathi, V. K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>K, Magesh Kumar K</au><au>Tripathi, V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High power laser coupling to carbon nano-tubes and ion Coulomb explosion</atitle><jtitle>Physics of plasmas</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>20</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at ω = ω p / 2 , where ω p is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches ω p = 2 ω , the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc , the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4819778</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2013-09, Vol.20 (9)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_22224192
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects AMPLITUDES
ATTENUATION
Axial stress
BEAMS
CARBON NANOTUBES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
COUPLING
CYLINDERS
DISSOCIATION
DISTANCE
DISTRIBUTION FUNCTIONS
Electron energy
ELECTRON TEMPERATURE
ELECTRONS
ENERGY DEPENDENCE
EXCURSIONS
EXPANSION
Free electrons
Gaussian beams (optics)
HEATING RATE
INTERACTIONS
LANGMUIR FREQUENCY
Laser arrays
Laser beam heating
LASERS
NONLINEAR OPTICS
NONLINEAR PROBLEMS
PLASMA
Plasma cylinders
Plasma physics
POLARIZATION
Propagation
RESONANCE
SURFACES
Tensors
Tubes
title High power laser coupling to carbon nano-tubes and ion Coulomb explosion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T10%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20power%20laser%20coupling%20to%20carbon%20nano-tubes%20and%20ion%20Coulomb%20explosion&rft.jtitle=Physics%20of%20plasmas&rft.au=K,%20Magesh%20Kumar%20K&rft.date=2013-09-01&rft.volume=20&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.4819778&rft_dat=%3Cproquest_osti_%3E2129494461%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129494461&rft_id=info:pmid/&rfr_iscdi=true