Approximate photochemical dynamics of azobenzene with reactive force fields
We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2013-12, Vol.139 (22), p.224303-224303 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224303 |
---|---|
container_issue | 22 |
container_start_page | 224303 |
container_title | The Journal of chemical physics |
container_volume | 139 |
creator | Li, Yan Hartke, Bernd |
description | We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work). |
doi_str_mv | 10.1063/1.4837237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22220235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1477561862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-cb072a6a13a15752823942a11625df3fb2fbbd2342e5452e5cc583e66c3f3b893</originalsourceid><addsrcrecordid>eNpFkUtPwzAQhC0EgvI48AdQJC5wSPGuHTs5IsRLVOICZ8txNmpQGpfY5fXrMWqBPczu4dNIM8vYMfApcCUuYCpLoVHoLTYBXla5VhXfZhPOEfJKcbXH9kN44ZyDRrnL9lAKrLiSE_ZwuVyO_qNb2EjZcu6jd3NadM72WfM52HSFzLeZ_fI1DV80UPbexXk2knWxe6Os9aNL2lHfhEO209o-0NFmH7Dnm-unq7t89nh7f3U5y50EiLmruUarLAgLhS6wRFFJtAAKi6YVbY1tXTcoJFIhiyTOFaUgpZxoRV1W4oCdrn19iJ0Jrovk5s4PA7loMA1HUSTqbE2lfK8rCtEsuuCo7-1AfhUMSK0LBaXCf8M_9MWvxiFlMAioU5u6Eok6X1Nu9CGM1JrlmHobPw1w8_MHA2bzh8SebBxX9YKaP_K3ePENA4eAJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127769793</pqid></control><display><type>article</type><title>Approximate photochemical dynamics of azobenzene with reactive force fields</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Li, Yan ; Hartke, Bernd</creator><creatorcontrib>Li, Yan ; Hartke, Bernd</creatorcontrib><description>We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4837237</identifier><identifier>PMID: 24329064</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical bonds ; Computer simulation ; Coupling (molecular) ; Electron states ; ENERGY GAP ; EXCITED STATES ; Genetic algorithms ; GROUND STATES ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; ISOMERIZATION ; Molecular machines ; ORGANIC COMPOUNDS ; Physics ; PROBABILITY ; REACTION KINETICS ; SIMULATION</subject><ispartof>The Journal of chemical physics, 2013-12, Vol.139 (22), p.224303-224303</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-cb072a6a13a15752823942a11625df3fb2fbbd2342e5452e5cc583e66c3f3b893</citedby><cites>FETCH-LOGICAL-c411t-cb072a6a13a15752823942a11625df3fb2fbbd2342e5452e5cc583e66c3f3b893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24329064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22220235$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Hartke, Bernd</creatorcontrib><title>Approximate photochemical dynamics of azobenzene with reactive force fields</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).</description><subject>Chemical bonds</subject><subject>Computer simulation</subject><subject>Coupling (molecular)</subject><subject>Electron states</subject><subject>ENERGY GAP</subject><subject>EXCITED STATES</subject><subject>Genetic algorithms</subject><subject>GROUND STATES</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>ISOMERIZATION</subject><subject>Molecular machines</subject><subject>ORGANIC COMPOUNDS</subject><subject>Physics</subject><subject>PROBABILITY</subject><subject>REACTION KINETICS</subject><subject>SIMULATION</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkUtPwzAQhC0EgvI48AdQJC5wSPGuHTs5IsRLVOICZ8txNmpQGpfY5fXrMWqBPczu4dNIM8vYMfApcCUuYCpLoVHoLTYBXla5VhXfZhPOEfJKcbXH9kN44ZyDRrnL9lAKrLiSE_ZwuVyO_qNb2EjZcu6jd3NadM72WfM52HSFzLeZ_fI1DV80UPbexXk2knWxe6Os9aNL2lHfhEO209o-0NFmH7Dnm-unq7t89nh7f3U5y50EiLmruUarLAgLhS6wRFFJtAAKi6YVbY1tXTcoJFIhiyTOFaUgpZxoRV1W4oCdrn19iJ0Jrovk5s4PA7loMA1HUSTqbE2lfK8rCtEsuuCo7-1AfhUMSK0LBaXCf8M_9MWvxiFlMAioU5u6Eok6X1Nu9CGM1JrlmHobPw1w8_MHA2bzh8SebBxX9YKaP_K3ePENA4eAJg</recordid><startdate>20131214</startdate><enddate>20131214</enddate><creator>Li, Yan</creator><creator>Hartke, Bernd</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20131214</creationdate><title>Approximate photochemical dynamics of azobenzene with reactive force fields</title><author>Li, Yan ; Hartke, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-cb072a6a13a15752823942a11625df3fb2fbbd2342e5452e5cc583e66c3f3b893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical bonds</topic><topic>Computer simulation</topic><topic>Coupling (molecular)</topic><topic>Electron states</topic><topic>ENERGY GAP</topic><topic>EXCITED STATES</topic><topic>Genetic algorithms</topic><topic>GROUND STATES</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>ISOMERIZATION</topic><topic>Molecular machines</topic><topic>ORGANIC COMPOUNDS</topic><topic>Physics</topic><topic>PROBABILITY</topic><topic>REACTION KINETICS</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Hartke, Bernd</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yan</au><au>Hartke, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate photochemical dynamics of azobenzene with reactive force fields</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-12-14</date><risdate>2013</risdate><volume>139</volume><issue>22</issue><spage>224303</spage><epage>224303</epage><pages>224303-224303</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24329064</pmid><doi>10.1063/1.4837237</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2013-12, Vol.139 (22), p.224303-224303 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22220235 |
source | American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Chemical bonds Computer simulation Coupling (molecular) Electron states ENERGY GAP EXCITED STATES Genetic algorithms GROUND STATES INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ISOMERIZATION Molecular machines ORGANIC COMPOUNDS Physics PROBABILITY REACTION KINETICS SIMULATION |
title | Approximate photochemical dynamics of azobenzene with reactive force fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20photochemical%20dynamics%20of%20azobenzene%20with%20reactive%20force%20fields&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Yan&rft.date=2013-12-14&rft.volume=139&rft.issue=22&rft.spage=224303&rft.epage=224303&rft.pages=224303-224303&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4837237&rft_dat=%3Cproquest_osti_%3E1477561862%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127769793&rft_id=info:pmid/24329064&rfr_iscdi=true |