Approximate photochemical dynamics of azobenzene with reactive force fields

We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2013-12, Vol.139 (22), p.224303-224303
Hauptverfasser: Li, Yan, Hartke, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224303
container_issue 22
container_start_page 224303
container_title The Journal of chemical physics
container_volume 139
creator Li, Yan
Hartke, Bernd
description We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).
doi_str_mv 10.1063/1.4837237
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22220235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1477561862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-cb072a6a13a15752823942a11625df3fb2fbbd2342e5452e5cc583e66c3f3b893</originalsourceid><addsrcrecordid>eNpFkUtPwzAQhC0EgvI48AdQJC5wSPGuHTs5IsRLVOICZ8txNmpQGpfY5fXrMWqBPczu4dNIM8vYMfApcCUuYCpLoVHoLTYBXla5VhXfZhPOEfJKcbXH9kN44ZyDRrnL9lAKrLiSE_ZwuVyO_qNb2EjZcu6jd3NadM72WfM52HSFzLeZ_fI1DV80UPbexXk2knWxe6Os9aNL2lHfhEO209o-0NFmH7Dnm-unq7t89nh7f3U5y50EiLmruUarLAgLhS6wRFFJtAAKi6YVbY1tXTcoJFIhiyTOFaUgpZxoRV1W4oCdrn19iJ0Jrovk5s4PA7loMA1HUSTqbE2lfK8rCtEsuuCo7-1AfhUMSK0LBaXCf8M_9MWvxiFlMAioU5u6Eok6X1Nu9CGM1JrlmHobPw1w8_MHA2bzh8SebBxX9YKaP_K3ePENA4eAJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127769793</pqid></control><display><type>article</type><title>Approximate photochemical dynamics of azobenzene with reactive force fields</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Li, Yan ; Hartke, Bernd</creator><creatorcontrib>Li, Yan ; Hartke, Bernd</creatorcontrib><description>We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4837237</identifier><identifier>PMID: 24329064</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical bonds ; Computer simulation ; Coupling (molecular) ; Electron states ; ENERGY GAP ; EXCITED STATES ; Genetic algorithms ; GROUND STATES ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; ISOMERIZATION ; Molecular machines ; ORGANIC COMPOUNDS ; Physics ; PROBABILITY ; REACTION KINETICS ; SIMULATION</subject><ispartof>The Journal of chemical physics, 2013-12, Vol.139 (22), p.224303-224303</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-cb072a6a13a15752823942a11625df3fb2fbbd2342e5452e5cc583e66c3f3b893</citedby><cites>FETCH-LOGICAL-c411t-cb072a6a13a15752823942a11625df3fb2fbbd2342e5452e5cc583e66c3f3b893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24329064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22220235$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Hartke, Bernd</creatorcontrib><title>Approximate photochemical dynamics of azobenzene with reactive force fields</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).</description><subject>Chemical bonds</subject><subject>Computer simulation</subject><subject>Coupling (molecular)</subject><subject>Electron states</subject><subject>ENERGY GAP</subject><subject>EXCITED STATES</subject><subject>Genetic algorithms</subject><subject>GROUND STATES</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>ISOMERIZATION</subject><subject>Molecular machines</subject><subject>ORGANIC COMPOUNDS</subject><subject>Physics</subject><subject>PROBABILITY</subject><subject>REACTION KINETICS</subject><subject>SIMULATION</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkUtPwzAQhC0EgvI48AdQJC5wSPGuHTs5IsRLVOICZ8txNmpQGpfY5fXrMWqBPczu4dNIM8vYMfApcCUuYCpLoVHoLTYBXla5VhXfZhPOEfJKcbXH9kN44ZyDRrnL9lAKrLiSE_ZwuVyO_qNb2EjZcu6jd3NadM72WfM52HSFzLeZ_fI1DV80UPbexXk2knWxe6Os9aNL2lHfhEO209o-0NFmH7Dnm-unq7t89nh7f3U5y50EiLmruUarLAgLhS6wRFFJtAAKi6YVbY1tXTcoJFIhiyTOFaUgpZxoRV1W4oCdrn19iJ0Jrovk5s4PA7loMA1HUSTqbE2lfK8rCtEsuuCo7-1AfhUMSK0LBaXCf8M_9MWvxiFlMAioU5u6Eok6X1Nu9CGM1JrlmHobPw1w8_MHA2bzh8SebBxX9YKaP_K3ePENA4eAJg</recordid><startdate>20131214</startdate><enddate>20131214</enddate><creator>Li, Yan</creator><creator>Hartke, Bernd</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20131214</creationdate><title>Approximate photochemical dynamics of azobenzene with reactive force fields</title><author>Li, Yan ; Hartke, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-cb072a6a13a15752823942a11625df3fb2fbbd2342e5452e5cc583e66c3f3b893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical bonds</topic><topic>Computer simulation</topic><topic>Coupling (molecular)</topic><topic>Electron states</topic><topic>ENERGY GAP</topic><topic>EXCITED STATES</topic><topic>Genetic algorithms</topic><topic>GROUND STATES</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>ISOMERIZATION</topic><topic>Molecular machines</topic><topic>ORGANIC COMPOUNDS</topic><topic>Physics</topic><topic>PROBABILITY</topic><topic>REACTION KINETICS</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Hartke, Bernd</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yan</au><au>Hartke, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate photochemical dynamics of azobenzene with reactive force fields</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-12-14</date><risdate>2013</risdate><volume>139</volume><issue>22</issue><spage>224303</spage><epage>224303</epage><pages>224303-224303</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24329064</pmid><doi>10.1063/1.4837237</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2013-12, Vol.139 (22), p.224303-224303
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22220235
source American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection
subjects Chemical bonds
Computer simulation
Coupling (molecular)
Electron states
ENERGY GAP
EXCITED STATES
Genetic algorithms
GROUND STATES
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
ISOMERIZATION
Molecular machines
ORGANIC COMPOUNDS
Physics
PROBABILITY
REACTION KINETICS
SIMULATION
title Approximate photochemical dynamics of azobenzene with reactive force fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20photochemical%20dynamics%20of%20azobenzene%20with%20reactive%20force%20fields&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Yan&rft.date=2013-12-14&rft.volume=139&rft.issue=22&rft.spage=224303&rft.epage=224303&rft.pages=224303-224303&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4837237&rft_dat=%3Cproquest_osti_%3E1477561862%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127769793&rft_id=info:pmid/24329064&rfr_iscdi=true