Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser

Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-12, Vol.103 (26)
Hauptverfasser: Seok Hwang, Yong, Levitas, Valery I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 26
container_start_page
container_title Applied physics letters
container_volume 103
creator Seok Hwang, Yong
Levitas, Valery I.
description Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q≥300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95≤Q≤1290 K/ps without fitting of material parameters.
doi_str_mv 10.1063/1.4858395
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22217715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127763982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-a46dd46ef0bb9f3431ef9bc2ba9a208dfdb99c8c17b26763be54c84053f62673</originalsourceid><addsrcrecordid>eNpFkU1v1DAQhi0EEkvhwD-wxKU9pHjsxHGOqCpQqVI59G45zph1cezFdg7bX4_pVu1pZl4986WXkM_ALoFJ8RUuezUoMQ1vyA7YOHYCQL0lO8aY6OQ0wHvyoZSHVg5ciB15_LU3BanzGBZa_LoFU32KNDn6x0es3tKyHTDvsenxNzVxoSuGp7wxJmyrj9tKo4kpmCNm6nM2izcVFzof6cHb1D11OVxrKmhTy0PbmT-Sd86Egp-e4xm5_359f_Wzu737cXP17bazAlTtTC-XpZfo2DxPTvQC0E2z5bOZDGdqccs8TVZZGGcuRylmHHqrejYIJ5sgzsiX09hUqtfF-op2366IaKvmnMM4wtCo8xN1yOnvhqXq1ReLIZiIaSsaZKOU7Ed4HfiCPqQtx_aC5sDHdsKkeKMuTpTNqZSMTh-yX00-amD6v1Ua9LNV4h9T4YaJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127763982</pqid></control><display><type>article</type><title>Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Seok Hwang, Yong ; Levitas, Valery I.</creator><creatorcontrib>Seok Hwang, Yong ; Levitas, Valery I.</creatorcontrib><description>Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q≥300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95≤Q≤1290 K/ps without fitting of material parameters.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4858395</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ALUMINIUM ; Aluminum ; Applied physics ; BEAMS ; Computer simulation ; Femtosecond ; FUNCTIONS ; HEAT TRANSFER ; HEATING RATE ; INTERFACES ; IRRADIATION ; Laser beam heating ; LASERS ; Linear functions ; MATERIALS SCIENCE ; Mathematical models ; MECHANICS ; MELTING ; Nanocomposites ; Nanomaterials ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanostructure ; NANOSTRUCTURES ; NUCLEATION ; SIMULATION ; SUPERHEATING ; SURFACES</subject><ispartof>Applied physics letters, 2013-12, Vol.103 (26)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-a46dd46ef0bb9f3431ef9bc2ba9a208dfdb99c8c17b26763be54c84053f62673</citedby><cites>FETCH-LOGICAL-c318t-a46dd46ef0bb9f3431ef9bc2ba9a208dfdb99c8c17b26763be54c84053f62673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22217715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Seok Hwang, Yong</creatorcontrib><creatorcontrib>Levitas, Valery I.</creatorcontrib><title>Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser</title><title>Applied physics letters</title><description>Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q≥300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95≤Q≤1290 K/ps without fitting of material parameters.</description><subject>ALUMINIUM</subject><subject>Aluminum</subject><subject>Applied physics</subject><subject>BEAMS</subject><subject>Computer simulation</subject><subject>Femtosecond</subject><subject>FUNCTIONS</subject><subject>HEAT TRANSFER</subject><subject>HEATING RATE</subject><subject>INTERFACES</subject><subject>IRRADIATION</subject><subject>Laser beam heating</subject><subject>LASERS</subject><subject>Linear functions</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>MECHANICS</subject><subject>MELTING</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanostructure</subject><subject>NANOSTRUCTURES</subject><subject>NUCLEATION</subject><subject>SIMULATION</subject><subject>SUPERHEATING</subject><subject>SURFACES</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkU1v1DAQhi0EEkvhwD-wxKU9pHjsxHGOqCpQqVI59G45zph1cezFdg7bX4_pVu1pZl4986WXkM_ALoFJ8RUuezUoMQ1vyA7YOHYCQL0lO8aY6OQ0wHvyoZSHVg5ciB15_LU3BanzGBZa_LoFU32KNDn6x0es3tKyHTDvsenxNzVxoSuGp7wxJmyrj9tKo4kpmCNm6nM2izcVFzof6cHb1D11OVxrKmhTy0PbmT-Sd86Egp-e4xm5_359f_Wzu737cXP17bazAlTtTC-XpZfo2DxPTvQC0E2z5bOZDGdqccs8TVZZGGcuRylmHHqrejYIJ5sgzsiX09hUqtfF-op2366IaKvmnMM4wtCo8xN1yOnvhqXq1ReLIZiIaSsaZKOU7Ed4HfiCPqQtx_aC5sDHdsKkeKMuTpTNqZSMTh-yX00-amD6v1Ua9LNV4h9T4YaJ</recordid><startdate>20131223</startdate><enddate>20131223</enddate><creator>Seok Hwang, Yong</creator><creator>Levitas, Valery I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>7SP</scope><scope>7U5</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20131223</creationdate><title>Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser</title><author>Seok Hwang, Yong ; Levitas, Valery I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-a46dd46ef0bb9f3431ef9bc2ba9a208dfdb99c8c17b26763be54c84053f62673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ALUMINIUM</topic><topic>Aluminum</topic><topic>Applied physics</topic><topic>BEAMS</topic><topic>Computer simulation</topic><topic>Femtosecond</topic><topic>FUNCTIONS</topic><topic>HEAT TRANSFER</topic><topic>HEATING RATE</topic><topic>INTERFACES</topic><topic>IRRADIATION</topic><topic>Laser beam heating</topic><topic>LASERS</topic><topic>Linear functions</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>MECHANICS</topic><topic>MELTING</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanostructure</topic><topic>NANOSTRUCTURES</topic><topic>NUCLEATION</topic><topic>SIMULATION</topic><topic>SUPERHEATING</topic><topic>SURFACES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seok Hwang, Yong</creatorcontrib><creatorcontrib>Levitas, Valery I.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seok Hwang, Yong</au><au>Levitas, Valery I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser</atitle><jtitle>Applied physics letters</jtitle><date>2013-12-23</date><risdate>2013</risdate><volume>103</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q≥300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95≤Q≤1290 K/ps without fitting of material parameters.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4858395</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-12, Vol.103 (26)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_22217715
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects ALUMINIUM
Aluminum
Applied physics
BEAMS
Computer simulation
Femtosecond
FUNCTIONS
HEAT TRANSFER
HEATING RATE
INTERFACES
IRRADIATION
Laser beam heating
LASERS
Linear functions
MATERIALS SCIENCE
Mathematical models
MECHANICS
MELTING
Nanocomposites
Nanomaterials
NANOSCIENCE AND NANOTECHNOLOGY
Nanostructure
NANOSTRUCTURES
NUCLEATION
SIMULATION
SUPERHEATING
SURFACES
title Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20field%20simulation%20of%20kinetic%20superheating%20and%20melting%20of%20aluminum%20nanolayer%20irradiated%20by%20pico-%20and%20femtosecond%20laser&rft.jtitle=Applied%20physics%20letters&rft.au=Seok%20Hwang,%20Yong&rft.date=2013-12-23&rft.volume=103&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4858395&rft_dat=%3Cproquest_osti_%3E2127763982%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127763982&rft_id=info:pmid/&rfr_iscdi=true