Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser
Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-12, Vol.103 (26) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 26 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 103 |
creator | Seok Hwang, Yong Levitas, Valery I. |
description | Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q≥300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95≤Q≤1290 K/ps without fitting of material parameters. |
doi_str_mv | 10.1063/1.4858395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22217715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127763982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-a46dd46ef0bb9f3431ef9bc2ba9a208dfdb99c8c17b26763be54c84053f62673</originalsourceid><addsrcrecordid>eNpFkU1v1DAQhi0EEkvhwD-wxKU9pHjsxHGOqCpQqVI59G45zph1cezFdg7bX4_pVu1pZl4986WXkM_ALoFJ8RUuezUoMQ1vyA7YOHYCQL0lO8aY6OQ0wHvyoZSHVg5ciB15_LU3BanzGBZa_LoFU32KNDn6x0es3tKyHTDvsenxNzVxoSuGp7wxJmyrj9tKo4kpmCNm6nM2izcVFzof6cHb1D11OVxrKmhTy0PbmT-Sd86Egp-e4xm5_359f_Wzu737cXP17bazAlTtTC-XpZfo2DxPTvQC0E2z5bOZDGdqccs8TVZZGGcuRylmHHqrejYIJ5sgzsiX09hUqtfF-op2366IaKvmnMM4wtCo8xN1yOnvhqXq1ReLIZiIaSsaZKOU7Ed4HfiCPqQtx_aC5sDHdsKkeKMuTpTNqZSMTh-yX00-amD6v1Ua9LNV4h9T4YaJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127763982</pqid></control><display><type>article</type><title>Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Seok Hwang, Yong ; Levitas, Valery I.</creator><creatorcontrib>Seok Hwang, Yong ; Levitas, Valery I.</creatorcontrib><description>Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q≥300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95≤Q≤1290 K/ps without fitting of material parameters.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4858395</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ALUMINIUM ; Aluminum ; Applied physics ; BEAMS ; Computer simulation ; Femtosecond ; FUNCTIONS ; HEAT TRANSFER ; HEATING RATE ; INTERFACES ; IRRADIATION ; Laser beam heating ; LASERS ; Linear functions ; MATERIALS SCIENCE ; Mathematical models ; MECHANICS ; MELTING ; Nanocomposites ; Nanomaterials ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanostructure ; NANOSTRUCTURES ; NUCLEATION ; SIMULATION ; SUPERHEATING ; SURFACES</subject><ispartof>Applied physics letters, 2013-12, Vol.103 (26)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-a46dd46ef0bb9f3431ef9bc2ba9a208dfdb99c8c17b26763be54c84053f62673</citedby><cites>FETCH-LOGICAL-c318t-a46dd46ef0bb9f3431ef9bc2ba9a208dfdb99c8c17b26763be54c84053f62673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22217715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Seok Hwang, Yong</creatorcontrib><creatorcontrib>Levitas, Valery I.</creatorcontrib><title>Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser</title><title>Applied physics letters</title><description>Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q≥300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95≤Q≤1290 K/ps without fitting of material parameters.</description><subject>ALUMINIUM</subject><subject>Aluminum</subject><subject>Applied physics</subject><subject>BEAMS</subject><subject>Computer simulation</subject><subject>Femtosecond</subject><subject>FUNCTIONS</subject><subject>HEAT TRANSFER</subject><subject>HEATING RATE</subject><subject>INTERFACES</subject><subject>IRRADIATION</subject><subject>Laser beam heating</subject><subject>LASERS</subject><subject>Linear functions</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>MECHANICS</subject><subject>MELTING</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanostructure</subject><subject>NANOSTRUCTURES</subject><subject>NUCLEATION</subject><subject>SIMULATION</subject><subject>SUPERHEATING</subject><subject>SURFACES</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkU1v1DAQhi0EEkvhwD-wxKU9pHjsxHGOqCpQqVI59G45zph1cezFdg7bX4_pVu1pZl4986WXkM_ALoFJ8RUuezUoMQ1vyA7YOHYCQL0lO8aY6OQ0wHvyoZSHVg5ciB15_LU3BanzGBZa_LoFU32KNDn6x0es3tKyHTDvsenxNzVxoSuGp7wxJmyrj9tKo4kpmCNm6nM2izcVFzof6cHb1D11OVxrKmhTy0PbmT-Sd86Egp-e4xm5_359f_Wzu737cXP17bazAlTtTC-XpZfo2DxPTvQC0E2z5bOZDGdqccs8TVZZGGcuRylmHHqrejYIJ5sgzsiX09hUqtfF-op2366IaKvmnMM4wtCo8xN1yOnvhqXq1ReLIZiIaSsaZKOU7Ed4HfiCPqQtx_aC5sDHdsKkeKMuTpTNqZSMTh-yX00-amD6v1Ua9LNV4h9T4YaJ</recordid><startdate>20131223</startdate><enddate>20131223</enddate><creator>Seok Hwang, Yong</creator><creator>Levitas, Valery I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>7SP</scope><scope>7U5</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20131223</creationdate><title>Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser</title><author>Seok Hwang, Yong ; Levitas, Valery I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-a46dd46ef0bb9f3431ef9bc2ba9a208dfdb99c8c17b26763be54c84053f62673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ALUMINIUM</topic><topic>Aluminum</topic><topic>Applied physics</topic><topic>BEAMS</topic><topic>Computer simulation</topic><topic>Femtosecond</topic><topic>FUNCTIONS</topic><topic>HEAT TRANSFER</topic><topic>HEATING RATE</topic><topic>INTERFACES</topic><topic>IRRADIATION</topic><topic>Laser beam heating</topic><topic>LASERS</topic><topic>Linear functions</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>MECHANICS</topic><topic>MELTING</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanostructure</topic><topic>NANOSTRUCTURES</topic><topic>NUCLEATION</topic><topic>SIMULATION</topic><topic>SUPERHEATING</topic><topic>SURFACES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seok Hwang, Yong</creatorcontrib><creatorcontrib>Levitas, Valery I.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seok Hwang, Yong</au><au>Levitas, Valery I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser</atitle><jtitle>Applied physics letters</jtitle><date>2013-12-23</date><risdate>2013</risdate><volume>103</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q≥300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95≤Q≤1290 K/ps without fitting of material parameters.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4858395</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2013-12, Vol.103 (26) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_22217715 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | ALUMINIUM Aluminum Applied physics BEAMS Computer simulation Femtosecond FUNCTIONS HEAT TRANSFER HEATING RATE INTERFACES IRRADIATION Laser beam heating LASERS Linear functions MATERIALS SCIENCE Mathematical models MECHANICS MELTING Nanocomposites Nanomaterials NANOSCIENCE AND NANOTECHNOLOGY Nanostructure NANOSTRUCTURES NUCLEATION SIMULATION SUPERHEATING SURFACES |
title | Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20field%20simulation%20of%20kinetic%20superheating%20and%20melting%20of%20aluminum%20nanolayer%20irradiated%20by%20pico-%20and%20femtosecond%20laser&rft.jtitle=Applied%20physics%20letters&rft.au=Seok%20Hwang,%20Yong&rft.date=2013-12-23&rft.volume=103&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4858395&rft_dat=%3Cproquest_osti_%3E2127763982%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127763982&rft_id=info:pmid/&rfr_iscdi=true |