Influence of the interface structure on the thermo-mechanical properties of Cu–X (X = Cr or B)/carbon fiber composites

[Display omitted] ► Two copper alloys/carbon fibers composites have been produced. ► Correlation of the thermo-mechanical properties with the microstructure and the chemistry. ► A composite with CTE 25% lower than a classic Cu/CF composite has been obtained. This study focuses on the fabrication, fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research bulletin 2012-02, Vol.47 (2), p.375-380
Hauptverfasser: Veillère, A., Heintz, J.-M., Chandra, N., Douin, J., Lahaye, M., Lalet, G., Vincent, C., Silvain, J.-F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 2
container_start_page 375
container_title Materials research bulletin
container_volume 47
creator Veillère, A.
Heintz, J.-M.
Chandra, N.
Douin, J.
Lahaye, M.
Lalet, G.
Vincent, C.
Silvain, J.-F.
description [Display omitted] ► Two copper alloys/carbon fibers composites have been produced. ► Correlation of the thermo-mechanical properties with the microstructure and the chemistry. ► A composite with CTE 25% lower than a classic Cu/CF composite has been obtained. This study focuses on the fabrication, for power electronics applications, of adaptive heat sink material using copper alloys/carbon fibers (CF) composites. In order to obtain composite material with good thermal conductivity and a coefficient of thermal expansion close to the ceramic substrate, it is necessary to have a strong matrix/reinforcement bond. Since there is no reaction between copper and carbon, a carbide element (chromium or boron) is added to the copper matrix to create a strong chemical bond. Composite materials (Cu–B/CF and Cu–Cr/CF) have been produced by a powder metallurgy process followed by an annealing treatment in order to create the carbide at the interphase. Chemical (Electron Probe Micro-Analysis, Auger Electron Spectroscopy) and microstructural (Scanning and Transmission Electron Microscopies) techniques were used to study the location of the alloying element and the carbide formation before and after diffusion. Finally, the thermo-mechanical properties have been measured and a promising composite material with a coefficient of thermal expansion 25% lower than a classic copper/carbon heat sink has been obtained.
doi_str_mv 10.1016/j.materresbull.2011.11.004
format Article
fullrecord <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22212426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025540811005241</els_id><sourcerecordid>oai_HAL_hal_00658593v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-a0c23dca1b91b8502fb1f7582cd33efb9155528701c0f1f178da5193ec52e7f23</originalsourceid><addsrcrecordid>eNqNUU1r3DAQFaWFbtP8B9FekoM3I9laewM5JNuPBBZ6aSE3IY9HrBbbWiQ5JLf-h_7D_pLK2RJ6LIwQvHnvaTSPsQ8ClgLE6mK_HEyiECi2U98vJQixzAVQvWIL0dRlUUlZv2YLAKkKVUHzlr2LcQ-Z0dT1gj3ejbafaETi3vK0I-7GbGhNBmIKE6Yp5Nb43MonDL4YCHdmdGh6fgj-QCE5irN8M_3--euen93zK74J3Ad-c36BJrRZb11LgaMfDj66RPE9e2NNH-n0733Cfnz5_H1zW2y_fb3bXG8LVFClwgDKskMj2rVoGwXStsLWqpHYlSXZjCqlZFODQLDCirrpjBLrklBJqq0sT9jHo6-PyemI-W3coR9HwqSllEJWcpVZ50fWzvT6ENxgwpP2xunb662eMYCVatS6fBCZe3nkYvAxBrIvAgF6TkXv9b-p6DkVnSvvPIs_HcWU__zgKMwjzevvXJgn6rz7H5s_rmGdWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of the interface structure on the thermo-mechanical properties of Cu–X (X = Cr or B)/carbon fiber composites</title><source>Elsevier ScienceDirect Journals</source><creator>Veillère, A. ; Heintz, J.-M. ; Chandra, N. ; Douin, J. ; Lahaye, M. ; Lalet, G. ; Vincent, C. ; Silvain, J.-F.</creator><creatorcontrib>Veillère, A. ; Heintz, J.-M. ; Chandra, N. ; Douin, J. ; Lahaye, M. ; Lalet, G. ; Vincent, C. ; Silvain, J.-F.</creatorcontrib><description>[Display omitted] ► Two copper alloys/carbon fibers composites have been produced. ► Correlation of the thermo-mechanical properties with the microstructure and the chemistry. ► A composite with CTE 25% lower than a classic Cu/CF composite has been obtained. This study focuses on the fabrication, for power electronics applications, of adaptive heat sink material using copper alloys/carbon fibers (CF) composites. In order to obtain composite material with good thermal conductivity and a coefficient of thermal expansion close to the ceramic substrate, it is necessary to have a strong matrix/reinforcement bond. Since there is no reaction between copper and carbon, a carbide element (chromium or boron) is added to the copper matrix to create a strong chemical bond. Composite materials (Cu–B/CF and Cu–Cr/CF) have been produced by a powder metallurgy process followed by an annealing treatment in order to create the carbide at the interphase. Chemical (Electron Probe Micro-Analysis, Auger Electron Spectroscopy) and microstructural (Scanning and Transmission Electron Microscopies) techniques were used to study the location of the alloying element and the carbide formation before and after diffusion. Finally, the thermo-mechanical properties have been measured and a promising composite material with a coefficient of thermal expansion 25% lower than a classic copper/carbon heat sink has been obtained.</description><identifier>ISSN: 0025-5408</identifier><identifier>EISSN: 1873-4227</identifier><identifier>DOI: 10.1016/j.materresbull.2011.11.004</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>A. Composites ; A. Interfaces ; AUGER ELECTRON SPECTROSCOPY ; CARBIDES ; CARBON ; CARBON FIBERS ; CHEMICAL BONDS ; COMPOSITE MATERIALS ; COPPER ; COPPER ALLOYS ; D. Microstructure ; D. Thermal conductivity ; D. Thermal expansion ; ELECTRON MICROPROBE ANALYSIS ; Engineering Sciences ; HEAT SINKS ; INTERFACES ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; Mechanics ; Mechanics of materials ; MICROSTRUCTURE ; POWDER METALLURGY ; THERMAL CONDUCTIVITY ; THERMAL EXPANSION ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>Materials research bulletin, 2012-02, Vol.47 (2), p.375-380</ispartof><rights>2011 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-a0c23dca1b91b8502fb1f7582cd33efb9155528701c0f1f178da5193ec52e7f23</citedby><cites>FETCH-LOGICAL-c504t-a0c23dca1b91b8502fb1f7582cd33efb9155528701c0f1f178da5193ec52e7f23</cites><orcidid>0000-0002-5249-1337 ; 0000-0001-6450-9015 ; 0000-0002-5881-6833 ; 0000-0002-1082-5714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025540811005241$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00658593$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22212426$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Veillère, A.</creatorcontrib><creatorcontrib>Heintz, J.-M.</creatorcontrib><creatorcontrib>Chandra, N.</creatorcontrib><creatorcontrib>Douin, J.</creatorcontrib><creatorcontrib>Lahaye, M.</creatorcontrib><creatorcontrib>Lalet, G.</creatorcontrib><creatorcontrib>Vincent, C.</creatorcontrib><creatorcontrib>Silvain, J.-F.</creatorcontrib><title>Influence of the interface structure on the thermo-mechanical properties of Cu–X (X = Cr or B)/carbon fiber composites</title><title>Materials research bulletin</title><description>[Display omitted] ► Two copper alloys/carbon fibers composites have been produced. ► Correlation of the thermo-mechanical properties with the microstructure and the chemistry. ► A composite with CTE 25% lower than a classic Cu/CF composite has been obtained. This study focuses on the fabrication, for power electronics applications, of adaptive heat sink material using copper alloys/carbon fibers (CF) composites. In order to obtain composite material with good thermal conductivity and a coefficient of thermal expansion close to the ceramic substrate, it is necessary to have a strong matrix/reinforcement bond. Since there is no reaction between copper and carbon, a carbide element (chromium or boron) is added to the copper matrix to create a strong chemical bond. Composite materials (Cu–B/CF and Cu–Cr/CF) have been produced by a powder metallurgy process followed by an annealing treatment in order to create the carbide at the interphase. Chemical (Electron Probe Micro-Analysis, Auger Electron Spectroscopy) and microstructural (Scanning and Transmission Electron Microscopies) techniques were used to study the location of the alloying element and the carbide formation before and after diffusion. Finally, the thermo-mechanical properties have been measured and a promising composite material with a coefficient of thermal expansion 25% lower than a classic copper/carbon heat sink has been obtained.</description><subject>A. Composites</subject><subject>A. Interfaces</subject><subject>AUGER ELECTRON SPECTROSCOPY</subject><subject>CARBIDES</subject><subject>CARBON</subject><subject>CARBON FIBERS</subject><subject>CHEMICAL BONDS</subject><subject>COMPOSITE MATERIALS</subject><subject>COPPER</subject><subject>COPPER ALLOYS</subject><subject>D. Microstructure</subject><subject>D. Thermal conductivity</subject><subject>D. Thermal expansion</subject><subject>ELECTRON MICROPROBE ANALYSIS</subject><subject>Engineering Sciences</subject><subject>HEAT SINKS</subject><subject>INTERFACES</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>MICROSTRUCTURE</subject><subject>POWDER METALLURGY</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMAL EXPANSION</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>0025-5408</issn><issn>1873-4227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUU1r3DAQFaWFbtP8B9FekoM3I9laewM5JNuPBBZ6aSE3IY9HrBbbWiQ5JLf-h_7D_pLK2RJ6LIwQvHnvaTSPsQ8ClgLE6mK_HEyiECi2U98vJQixzAVQvWIL0dRlUUlZv2YLAKkKVUHzlr2LcQ-Z0dT1gj3ejbafaETi3vK0I-7GbGhNBmIKE6Yp5Nb43MonDL4YCHdmdGh6fgj-QCE5irN8M_3--euen93zK74J3Ad-c36BJrRZb11LgaMfDj66RPE9e2NNH-n0733Cfnz5_H1zW2y_fb3bXG8LVFClwgDKskMj2rVoGwXStsLWqpHYlSXZjCqlZFODQLDCirrpjBLrklBJqq0sT9jHo6-PyemI-W3coR9HwqSllEJWcpVZ50fWzvT6ENxgwpP2xunb662eMYCVatS6fBCZe3nkYvAxBrIvAgF6TkXv9b-p6DkVnSvvPIs_HcWU__zgKMwjzevvXJgn6rz7H5s_rmGdWQ</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Veillère, A.</creator><creator>Heintz, J.-M.</creator><creator>Chandra, N.</creator><creator>Douin, J.</creator><creator>Lahaye, M.</creator><creator>Lalet, G.</creator><creator>Vincent, C.</creator><creator>Silvain, J.-F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5249-1337</orcidid><orcidid>https://orcid.org/0000-0001-6450-9015</orcidid><orcidid>https://orcid.org/0000-0002-5881-6833</orcidid><orcidid>https://orcid.org/0000-0002-1082-5714</orcidid></search><sort><creationdate>20120201</creationdate><title>Influence of the interface structure on the thermo-mechanical properties of Cu–X (X = Cr or B)/carbon fiber composites</title><author>Veillère, A. ; Heintz, J.-M. ; Chandra, N. ; Douin, J. ; Lahaye, M. ; Lalet, G. ; Vincent, C. ; Silvain, J.-F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-a0c23dca1b91b8502fb1f7582cd33efb9155528701c0f1f178da5193ec52e7f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A. Composites</topic><topic>A. Interfaces</topic><topic>AUGER ELECTRON SPECTROSCOPY</topic><topic>CARBIDES</topic><topic>CARBON</topic><topic>CARBON FIBERS</topic><topic>CHEMICAL BONDS</topic><topic>COMPOSITE MATERIALS</topic><topic>COPPER</topic><topic>COPPER ALLOYS</topic><topic>D. Microstructure</topic><topic>D. Thermal conductivity</topic><topic>D. Thermal expansion</topic><topic>ELECTRON MICROPROBE ANALYSIS</topic><topic>Engineering Sciences</topic><topic>HEAT SINKS</topic><topic>INTERFACES</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>MICROSTRUCTURE</topic><topic>POWDER METALLURGY</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMAL EXPANSION</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veillère, A.</creatorcontrib><creatorcontrib>Heintz, J.-M.</creatorcontrib><creatorcontrib>Chandra, N.</creatorcontrib><creatorcontrib>Douin, J.</creatorcontrib><creatorcontrib>Lahaye, M.</creatorcontrib><creatorcontrib>Lalet, G.</creatorcontrib><creatorcontrib>Vincent, C.</creatorcontrib><creatorcontrib>Silvain, J.-F.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Materials research bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veillère, A.</au><au>Heintz, J.-M.</au><au>Chandra, N.</au><au>Douin, J.</au><au>Lahaye, M.</au><au>Lalet, G.</au><au>Vincent, C.</au><au>Silvain, J.-F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the interface structure on the thermo-mechanical properties of Cu–X (X = Cr or B)/carbon fiber composites</atitle><jtitle>Materials research bulletin</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>47</volume><issue>2</issue><spage>375</spage><epage>380</epage><pages>375-380</pages><issn>0025-5408</issn><eissn>1873-4227</eissn><abstract>[Display omitted] ► Two copper alloys/carbon fibers composites have been produced. ► Correlation of the thermo-mechanical properties with the microstructure and the chemistry. ► A composite with CTE 25% lower than a classic Cu/CF composite has been obtained. This study focuses on the fabrication, for power electronics applications, of adaptive heat sink material using copper alloys/carbon fibers (CF) composites. In order to obtain composite material with good thermal conductivity and a coefficient of thermal expansion close to the ceramic substrate, it is necessary to have a strong matrix/reinforcement bond. Since there is no reaction between copper and carbon, a carbide element (chromium or boron) is added to the copper matrix to create a strong chemical bond. Composite materials (Cu–B/CF and Cu–Cr/CF) have been produced by a powder metallurgy process followed by an annealing treatment in order to create the carbide at the interphase. Chemical (Electron Probe Micro-Analysis, Auger Electron Spectroscopy) and microstructural (Scanning and Transmission Electron Microscopies) techniques were used to study the location of the alloying element and the carbide formation before and after diffusion. Finally, the thermo-mechanical properties have been measured and a promising composite material with a coefficient of thermal expansion 25% lower than a classic copper/carbon heat sink has been obtained.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.materresbull.2011.11.004</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5249-1337</orcidid><orcidid>https://orcid.org/0000-0001-6450-9015</orcidid><orcidid>https://orcid.org/0000-0002-5881-6833</orcidid><orcidid>https://orcid.org/0000-0002-1082-5714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5408
ispartof Materials research bulletin, 2012-02, Vol.47 (2), p.375-380
issn 0025-5408
1873-4227
language eng
recordid cdi_osti_scitechconnect_22212426
source Elsevier ScienceDirect Journals
subjects A. Composites
A. Interfaces
AUGER ELECTRON SPECTROSCOPY
CARBIDES
CARBON
CARBON FIBERS
CHEMICAL BONDS
COMPOSITE MATERIALS
COPPER
COPPER ALLOYS
D. Microstructure
D. Thermal conductivity
D. Thermal expansion
ELECTRON MICROPROBE ANALYSIS
Engineering Sciences
HEAT SINKS
INTERFACES
MATERIALS SCIENCE
MECHANICAL PROPERTIES
Mechanics
Mechanics of materials
MICROSTRUCTURE
POWDER METALLURGY
THERMAL CONDUCTIVITY
THERMAL EXPANSION
TRANSMISSION ELECTRON MICROSCOPY
title Influence of the interface structure on the thermo-mechanical properties of Cu–X (X = Cr or B)/carbon fiber composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20interface%20structure%20on%20the%20thermo-mechanical%20properties%20of%20Cu%E2%80%93X%20(X%20=%20Cr%20or%20B)/carbon%20fiber%20composites&rft.jtitle=Materials%20research%20bulletin&rft.au=Veill%C3%A8re,%20A.&rft.date=2012-02-01&rft.volume=47&rft.issue=2&rft.spage=375&rft.epage=380&rft.pages=375-380&rft.issn=0025-5408&rft.eissn=1873-4227&rft_id=info:doi/10.1016/j.materresbull.2011.11.004&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_00658593v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0025540811005241&rfr_iscdi=true