Simultaneous measurements of kinetic and scalar energy spectrum time evolution in the Richtmyer–Meshkov instability upon reshock

The Richtmyer–Meshkov instability (Richtmyer, Commun. Pure Appl. Maths, vol. 13, issue 2, 1960, pp. 297–319; Meshkov, Fluid Dyn., vol. 4, issue 5, 1972, pp. 101–104) of a twice-shocked gas interface is studied using both high spatial resolution single-shot (SS) and lower spatial resolution, time-res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-11, Vol.975, Article A39
Hauptverfasser: Noble, Christopher D., Ames, Alex M., McConnell, Raymond, Oakley, Jason, Rothamer, David A., Bonazza, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 975
creator Noble, Christopher D.
Ames, Alex M.
McConnell, Raymond
Oakley, Jason
Rothamer, David A.
Bonazza, Riccardo
description The Richtmyer–Meshkov instability (Richtmyer, Commun. Pure Appl. Maths, vol. 13, issue 2, 1960, pp. 297–319; Meshkov, Fluid Dyn., vol. 4, issue 5, 1972, pp. 101–104) of a twice-shocked gas interface is studied using both high spatial resolution single-shot (SS) and lower spatial resolution, time-resolved, high-speed (HS) simultaneous planar laser-induced fluorescence and particle image velocimetry in the Wisconsin Shock Tube Laboratory's vertical shock tube. The initial condition (IC) is a shear layer with broadband diffuse perturbations at the interface between a helium–acetone mixture and argon. This IC is accelerated by a shock of nominal strength Mach number $M = 1.75$, and then accelerated again by the transmitted shock that reflects off the end wall of the tube. An ensemble of experiments is analysed after reshock while the interface mixing width grows linearly with time. The kinetic and scalar energy spectra and the terms of their evolution equation are calculated and compared between SS and HS experiments. The inertial range scaling of the scalar power spectrum is found to follow Gibson's relation (Gibson, Phys. Fluids, vol. 11, issue 11, 1968, pp. 2316–2327) as a function of Schmidt number when the effective turbulent Schmidt number is used in place of the material Schmidt number that controls equilibrium scaling. Further, the spatially integrated scalar flux follows similar behaviour observed for the kinetic energy in large eddy simulation studies by Zeng et al. (Phys. Fluids, vol. 30, issue 6, 2018, 064106) while the spatially varying scalar flux exhibits back scatter along the centre of the mixing layer and forward energy transfer in the spike and bubble regions.
doi_str_mv 10.1017/jfm.2023.854
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2217366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_854</cupid><sourcerecordid>2892250165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-15b9e1c98682874db23cb34589cc253d9f875091006377f5ba4395fb359867da3</originalsourceid><addsrcrecordid>eNptkctqHDEQRUVIIBMnu3yAiLfusR6tVmsZjJMYbAx5rIVaXe3RTEsaS2rD7EJ-IX_oL7HMGLLJqhZ17qWKg9BHStaUUHm-nfyaEcbXvWhfoRVtO9XIrhWv0YoQxhpKGXmL3uW8JYRyouQK_fnh_DIXEyAuGXsweUngIZSM44R3LkBxFpsw4mzNbBKGAOnugPMebEmLx8V5wPAQ56W4GLALuGwAf3d2U_wB0uPvvzeQN7v4UFe5mMHNrhzwsq9sqotod-_Rm8nMGT68zBP068vlz4tvzfXt16uLz9eN5Z0sDRWDAmpV3_Wsl-04MG4H3opeWcsEH9XUS0EUJaTjUk5iMC1XYhq4qBE5Gn6CPh17Yy5OZ-sK2I2NIdRPNGNU8q6r0OkR2qd4v0AuehuXFOpdmvWKMUFoJyp1dqRsijknmPQ-OW_SQVOin1XoqkI_q9BVRcXXL7jxQ3LjHfxr_W_gCZLvjig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892250165</pqid></control><display><type>article</type><title>Simultaneous measurements of kinetic and scalar energy spectrum time evolution in the Richtmyer–Meshkov instability upon reshock</title><source>Cambridge Journals</source><creator>Noble, Christopher D. ; Ames, Alex M. ; McConnell, Raymond ; Oakley, Jason ; Rothamer, David A. ; Bonazza, Riccardo</creator><creatorcontrib>Noble, Christopher D. ; Ames, Alex M. ; McConnell, Raymond ; Oakley, Jason ; Rothamer, David A. ; Bonazza, Riccardo ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>The Richtmyer–Meshkov instability (Richtmyer, Commun. Pure Appl. Maths, vol. 13, issue 2, 1960, pp. 297–319; Meshkov, Fluid Dyn., vol. 4, issue 5, 1972, pp. 101–104) of a twice-shocked gas interface is studied using both high spatial resolution single-shot (SS) and lower spatial resolution, time-resolved, high-speed (HS) simultaneous planar laser-induced fluorescence and particle image velocimetry in the Wisconsin Shock Tube Laboratory's vertical shock tube. The initial condition (IC) is a shear layer with broadband diffuse perturbations at the interface between a helium–acetone mixture and argon. This IC is accelerated by a shock of nominal strength Mach number $M = 1.75$, and then accelerated again by the transmitted shock that reflects off the end wall of the tube. An ensemble of experiments is analysed after reshock while the interface mixing width grows linearly with time. The kinetic and scalar energy spectra and the terms of their evolution equation are calculated and compared between SS and HS experiments. The inertial range scaling of the scalar power spectrum is found to follow Gibson's relation (Gibson, Phys. Fluids, vol. 11, issue 11, 1968, pp. 2316–2327) as a function of Schmidt number when the effective turbulent Schmidt number is used in place of the material Schmidt number that controls equilibrium scaling. Further, the spatially integrated scalar flux follows similar behaviour observed for the kinetic energy in large eddy simulation studies by Zeng et al. (Phys. Fluids, vol. 30, issue 6, 2018, 064106) while the spatially varying scalar flux exhibits back scatter along the centre of the mixing layer and forward energy transfer in the spike and bubble regions.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.854</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Acetone ; Argon ; Broadband ; Energy ; Energy spectra ; Energy transfer ; Evolution ; Experiments ; Fluid flow ; Fluids ; Fluorescence ; Helium ; JFM Papers ; Kinetic energy ; Large eddy simulation ; Lasers ; Mach number ; Particle image velocimetry ; Planar laser induced fluorescence ; Richtmeyer-Meshkov instability ; Richtmyer-Meshkov instability ; Scaling ; Schmidt number ; Shear layers ; Shock ; shock-driven turbulence ; shock-induced mixing ; Simulation ; Spatial discrimination ; Spatial resolution ; Velocity</subject><ispartof>Journal of fluid mechanics, 2023-11, Vol.975, Article A39</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-15b9e1c98682874db23cb34589cc253d9f875091006377f5ba4395fb359867da3</citedby><cites>FETCH-LOGICAL-c367t-15b9e1c98682874db23cb34589cc253d9f875091006377f5ba4395fb359867da3</cites><orcidid>0000-0002-2998-7107 ; 0000-0001-6496-5424 ; 0000-0001-9992-0373 ; 0000000199920373 ; 0000000164965424 ; 0000000229987107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023008546/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,314,776,780,881,27903,27904,55606</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2217366$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Noble, Christopher D.</creatorcontrib><creatorcontrib>Ames, Alex M.</creatorcontrib><creatorcontrib>McConnell, Raymond</creatorcontrib><creatorcontrib>Oakley, Jason</creatorcontrib><creatorcontrib>Rothamer, David A.</creatorcontrib><creatorcontrib>Bonazza, Riccardo</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Simultaneous measurements of kinetic and scalar energy spectrum time evolution in the Richtmyer–Meshkov instability upon reshock</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The Richtmyer–Meshkov instability (Richtmyer, Commun. Pure Appl. Maths, vol. 13, issue 2, 1960, pp. 297–319; Meshkov, Fluid Dyn., vol. 4, issue 5, 1972, pp. 101–104) of a twice-shocked gas interface is studied using both high spatial resolution single-shot (SS) and lower spatial resolution, time-resolved, high-speed (HS) simultaneous planar laser-induced fluorescence and particle image velocimetry in the Wisconsin Shock Tube Laboratory's vertical shock tube. The initial condition (IC) is a shear layer with broadband diffuse perturbations at the interface between a helium–acetone mixture and argon. This IC is accelerated by a shock of nominal strength Mach number $M = 1.75$, and then accelerated again by the transmitted shock that reflects off the end wall of the tube. An ensemble of experiments is analysed after reshock while the interface mixing width grows linearly with time. The kinetic and scalar energy spectra and the terms of their evolution equation are calculated and compared between SS and HS experiments. The inertial range scaling of the scalar power spectrum is found to follow Gibson's relation (Gibson, Phys. Fluids, vol. 11, issue 11, 1968, pp. 2316–2327) as a function of Schmidt number when the effective turbulent Schmidt number is used in place of the material Schmidt number that controls equilibrium scaling. Further, the spatially integrated scalar flux follows similar behaviour observed for the kinetic energy in large eddy simulation studies by Zeng et al. (Phys. Fluids, vol. 30, issue 6, 2018, 064106) while the spatially varying scalar flux exhibits back scatter along the centre of the mixing layer and forward energy transfer in the spike and bubble regions.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Acetone</subject><subject>Argon</subject><subject>Broadband</subject><subject>Energy</subject><subject>Energy spectra</subject><subject>Energy transfer</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fluorescence</subject><subject>Helium</subject><subject>JFM Papers</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Lasers</subject><subject>Mach number</subject><subject>Particle image velocimetry</subject><subject>Planar laser induced fluorescence</subject><subject>Richtmeyer-Meshkov instability</subject><subject>Richtmyer-Meshkov instability</subject><subject>Scaling</subject><subject>Schmidt number</subject><subject>Shear layers</subject><subject>Shock</subject><subject>shock-driven turbulence</subject><subject>shock-induced mixing</subject><subject>Simulation</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkctqHDEQRUVIIBMnu3yAiLfusR6tVmsZjJMYbAx5rIVaXe3RTEsaS2rD7EJ-IX_oL7HMGLLJqhZ17qWKg9BHStaUUHm-nfyaEcbXvWhfoRVtO9XIrhWv0YoQxhpKGXmL3uW8JYRyouQK_fnh_DIXEyAuGXsweUngIZSM44R3LkBxFpsw4mzNbBKGAOnugPMebEmLx8V5wPAQ56W4GLALuGwAf3d2U_wB0uPvvzeQN7v4UFe5mMHNrhzwsq9sqotod-_Rm8nMGT68zBP068vlz4tvzfXt16uLz9eN5Z0sDRWDAmpV3_Wsl-04MG4H3opeWcsEH9XUS0EUJaTjUk5iMC1XYhq4qBE5Gn6CPh17Yy5OZ-sK2I2NIdRPNGNU8q6r0OkR2qd4v0AuehuXFOpdmvWKMUFoJyp1dqRsijknmPQ-OW_SQVOin1XoqkI_q9BVRcXXL7jxQ3LjHfxr_W_gCZLvjig</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Noble, Christopher D.</creator><creator>Ames, Alex M.</creator><creator>McConnell, Raymond</creator><creator>Oakley, Jason</creator><creator>Rothamer, David A.</creator><creator>Bonazza, Riccardo</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2998-7107</orcidid><orcidid>https://orcid.org/0000-0001-6496-5424</orcidid><orcidid>https://orcid.org/0000-0001-9992-0373</orcidid><orcidid>https://orcid.org/0000000199920373</orcidid><orcidid>https://orcid.org/0000000164965424</orcidid><orcidid>https://orcid.org/0000000229987107</orcidid></search><sort><creationdate>20231121</creationdate><title>Simultaneous measurements of kinetic and scalar energy spectrum time evolution in the Richtmyer–Meshkov instability upon reshock</title><author>Noble, Christopher D. ; Ames, Alex M. ; McConnell, Raymond ; Oakley, Jason ; Rothamer, David A. ; Bonazza, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-15b9e1c98682874db23cb34589cc253d9f875091006377f5ba4395fb359867da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Acetone</topic><topic>Argon</topic><topic>Broadband</topic><topic>Energy</topic><topic>Energy spectra</topic><topic>Energy transfer</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fluorescence</topic><topic>Helium</topic><topic>JFM Papers</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Lasers</topic><topic>Mach number</topic><topic>Particle image velocimetry</topic><topic>Planar laser induced fluorescence</topic><topic>Richtmeyer-Meshkov instability</topic><topic>Richtmyer-Meshkov instability</topic><topic>Scaling</topic><topic>Schmidt number</topic><topic>Shear layers</topic><topic>Shock</topic><topic>shock-driven turbulence</topic><topic>shock-induced mixing</topic><topic>Simulation</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noble, Christopher D.</creatorcontrib><creatorcontrib>Ames, Alex M.</creatorcontrib><creatorcontrib>McConnell, Raymond</creatorcontrib><creatorcontrib>Oakley, Jason</creatorcontrib><creatorcontrib>Rothamer, David A.</creatorcontrib><creatorcontrib>Bonazza, Riccardo</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noble, Christopher D.</au><au>Ames, Alex M.</au><au>McConnell, Raymond</au><au>Oakley, Jason</au><au>Rothamer, David A.</au><au>Bonazza, Riccardo</au><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous measurements of kinetic and scalar energy spectrum time evolution in the Richtmyer–Meshkov instability upon reshock</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-11-21</date><risdate>2023</risdate><volume>975</volume><artnum>A39</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The Richtmyer–Meshkov instability (Richtmyer, Commun. Pure Appl. Maths, vol. 13, issue 2, 1960, pp. 297–319; Meshkov, Fluid Dyn., vol. 4, issue 5, 1972, pp. 101–104) of a twice-shocked gas interface is studied using both high spatial resolution single-shot (SS) and lower spatial resolution, time-resolved, high-speed (HS) simultaneous planar laser-induced fluorescence and particle image velocimetry in the Wisconsin Shock Tube Laboratory's vertical shock tube. The initial condition (IC) is a shear layer with broadband diffuse perturbations at the interface between a helium–acetone mixture and argon. This IC is accelerated by a shock of nominal strength Mach number $M = 1.75$, and then accelerated again by the transmitted shock that reflects off the end wall of the tube. An ensemble of experiments is analysed after reshock while the interface mixing width grows linearly with time. The kinetic and scalar energy spectra and the terms of their evolution equation are calculated and compared between SS and HS experiments. The inertial range scaling of the scalar power spectrum is found to follow Gibson's relation (Gibson, Phys. Fluids, vol. 11, issue 11, 1968, pp. 2316–2327) as a function of Schmidt number when the effective turbulent Schmidt number is used in place of the material Schmidt number that controls equilibrium scaling. Further, the spatially integrated scalar flux follows similar behaviour observed for the kinetic energy in large eddy simulation studies by Zeng et al. (Phys. Fluids, vol. 30, issue 6, 2018, 064106) while the spatially varying scalar flux exhibits back scatter along the centre of the mixing layer and forward energy transfer in the spike and bubble regions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.854</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2998-7107</orcidid><orcidid>https://orcid.org/0000-0001-6496-5424</orcidid><orcidid>https://orcid.org/0000-0001-9992-0373</orcidid><orcidid>https://orcid.org/0000000199920373</orcidid><orcidid>https://orcid.org/0000000164965424</orcidid><orcidid>https://orcid.org/0000000229987107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-11, Vol.975, Article A39
issn 0022-1120
1469-7645
language eng
recordid cdi_osti_scitechconnect_2217366
source Cambridge Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Acetone
Argon
Broadband
Energy
Energy spectra
Energy transfer
Evolution
Experiments
Fluid flow
Fluids
Fluorescence
Helium
JFM Papers
Kinetic energy
Large eddy simulation
Lasers
Mach number
Particle image velocimetry
Planar laser induced fluorescence
Richtmeyer-Meshkov instability
Richtmyer-Meshkov instability
Scaling
Schmidt number
Shear layers
Shock
shock-driven turbulence
shock-induced mixing
Simulation
Spatial discrimination
Spatial resolution
Velocity
title Simultaneous measurements of kinetic and scalar energy spectrum time evolution in the Richtmyer–Meshkov instability upon reshock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20measurements%20of%20kinetic%20and%20scalar%20energy%20spectrum%20time%20evolution%20in%20the%20Richtmyer%E2%80%93Meshkov%20instability%20upon%20reshock&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Noble,%20Christopher%20D.&rft.aucorp=Univ.%20of%20Wisconsin,%20Madison,%20WI%20(United%20States)&rft.date=2023-11-21&rft.volume=975&rft.artnum=A39&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.854&rft_dat=%3Cproquest_osti_%3E2892250165%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892250165&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_854&rfr_iscdi=true